Présentation

Article

1 - SYNTHÈSE DES MATÉRIAUX

2 - AVANTAGES FONDAMENTAUX

3 - DISPOSITIFS

4 - CARACTÉRISATION DES STRUCTURES

5 - TRANSISTORS MOS À DÉPLÉTION TOTALE

6 - TRANSISTORS PARTIELLEMENT DÉPLÉTÉS

7 - MINIATURISATION DES COMPOSANTS

8 - ARCHITECTURES INNOVANTES POUR TRANSISTORS SOI ULTIMES

9 - DÉFIS

10 - CONCLUSION

| Réf : E2380 v1

Architectures innovantes pour transistors SOI ultimes
Technologie silicium sur isolant (SOI)

Auteur(s) : Sorin CRISTOLOVEANU, Francis BALESTRA

Date de publication : 10 mai 2002

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Sorin CRISTOLOVEANU

  • Francis BALESTRA : Directeurs de recherche au CNRS, Institut de microélectronique, électromagnétisme et photonique (IMEP), École nationale supérieure d’électronique et de radioélectricité de Grenoble (ENSERG)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La technologie silicium sur isolant (« silicon on insulator » : SOI) a été inventée dans les années 1960-1970 pour satisfaire la demande de circuits intégrés durcis aux irradiations ionisantes. Le premier matériau, le silicium sur saphir (SOS), a été suivi par une variété de structures SOI. Leur dénominateur commun est d’offrir, grâce à un oxyde enterré, une parfaite isolation diélectrique entre la couche active des circuits et le substrat de silicium massif (figure 1). En effet, dans un transistor à effet de champ métal oxyde semi-conducteur (MOSFET), il n’y a que la couche superficielle de silicium, d’épaisseur 0,1 à 0,2 µm (c’est-à-dire moins de 0,1 % de l’épaisseur totale de la plaquette de silicium), qui est vraiment utile pour le transport des électrons. Le reste de la plaquette est responsable d’effets parasites indésirables, que l’on peut éviter en faisant appel à une solution de type SOI (figure 1) .

Depuis le début des années 1990, la mise au point de nouveaux matériaux SOI, ainsi que l’explosion des appareils électroniques portables, a promu le SOI comme une technologie de choix pour la fabrication de composants à basse consommation et à haute fréquence.

Nous décrivons l’état de l’art des technologies SOI, en commençant par les méthodes de synthèse des principaux matériaux. Les avantages essentiels des circuits SOI, par rapport aux dispositifs conventionnels sur silicium massif, sont présentés, avant de faire plus ample connaissance avec les composants typiques déjà fabriqués sur SOI. Les méthodes de caractérisation, in situ ou fondées sur l’inspection des composants, sont évoquées. Nous verrons que les mécanismes physiques qui régissent le fonctionnement des transistors MOS sur SOI, partiellement ou totalement désertés, sont assez différents de ceux habituellement rencontrés dans les MOSFET (« metal oxide semiconductor field effect transistor ») sur silicium massif. Le SOI a un fort potentiel pour repousser les frontières de la microélectronique, par la miniaturisation des transistors MOS conventionnels ou bien par les architectures innovantes qu’il peut accueillir. Nous discuterons finalement les défis qui restent à relever avant que le SOI puisse jouer le rôle dominant qu’il mérite sur le marché de la micro-électronique.

 

Ce travail a été réalisé en partie au sein du Centre de projets en microélectronique avancée (CPMA) créé par le CNRS, le Laboratoire d’électronique, de technologie et d’instrumentation (LETI) du Commissariat à l’énergie atomique (CEA), l’Institut national polytechnique de Grenoble (INPG) et l’Institut national de sciences appliquées (INSA). Nos collègues – du CPMA, de l’IMEP et de très loin –, porteurs du virus SOI, sont remerciés pour tout ce qu’ils nous ont appris.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e2380


Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

8. Architectures innovantes pour transistors SOI ultimes

8.1 Transistor à tension de seuil dynamique : DT-MOSFET

Le DT-MOSFET est un transistor partiellement déplété très intéressant, qui fonctionne sur le principe d’une tension de seuil dynamique. Cette configuration est simplement obtenue en connectant la grille et la couche de silicium (figure 24 e ). Quand la tension de grille augmente en inversion faible, la croissance simultanée du potentiel dans le film de silicium provoque une réduction graduelle de la tension de seuil. Les composants DT-MOSFET permettent d’obtenir un couplage grille-charge parfait, une pente en faible inversion maximum, une transconductance améliorée et un courant de drain plus élevé. Ces caractéristiques sont très attractives pour les circuits basse tension-faible consommation : faible courant de fuite au repos et fort courant de drain à l’état passant.

Un modèle simple permet de mesurer les avantages du DT-MOSFET en comparant ses paramètres à ceux d’un transistor où le contact du film est relié à la masse (BG : body grounded) :

µDT = k µBG

Le paramètre k, qui résume les améliorations du DT-MOSFET, peut être calculé analytiquement .

HAUT DE PAGE

8.2 Transistor à plan de masse

La polarisation...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Architectures innovantes pour transistors SOI ultimes
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CRISTOLOVEANU (S.), LI (S.S.) -   Electrical Characterization of SOI Materials and Devices  -  . Kluwer, Norwell (1995).

  • (2) - CRISTOLOVEANU (S.) -   Silicon films on sapphire  -  . Rep. Prog. Phys., 3, 1987, 327.

  • (3) - JOHNSON (R.A.), DE LA HOUSSEY (P.R.), CHANG (C.E.), CHEN (P.-F.), WOOD (M.E.), GARCIA (G.A.), LAGNADO (I.), ASBECK (P.M.) -   Advanced thin-film silicon-on-sapphire technology : microwave circuit applications  -  . IEEE Trans. Electron Devices, 45, 1998, 1047.

  • (4) - MORIYASU (Y.), MORISHITA (T.), MATSUI (M.), YASUJIMA (A.) -   Preparation of high quality silicon on sapphire  -  . Silicon-On-Insulator Technology and Devices IX, Electrochemical Soc., Pennington, 99–3, 1999, 137-142.

  • (5) - CRISTOLOVEANU (S.) -   SOI : a metamorphosis of silicon  -  . IEEE Magazine : Circuits & Devices 99–18, 15 (1), 1999, 26-32.

  • (6) - CRISTOLOVEANU (S.) -   A...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS