Présentation

Article

1 - PLACE DES MOTEURS DE RECOMMANDATION DANS LA SOCIÉTÉ NUMÉRIQUE

  • 1.1 - Moteurs de recommandation et Web 2.0.
  • 1.2 - Digital Marketing et recommandation
  • 1.3 - Big Data comme carburant des systèmes de recommandation

2 - AUTRES CHAMPS D'APPLICATION

  • 2.1 - Recommandation et vidéo
  • 2.2 - Recommandation et littérature
  • 2.3 - Recommandation et culture scientifique

3 - MÉTHODOLOGIE DE RECOMMANDATION ET ALGORITHMES

  • 3.1 - Introduction
  • 3.2 - Filtrage basé sur le contenu
  • 3.3 - Filtrage collaboratif
  • 3.4 - Modèles hybrides
  • 3.5 - Évaluation des systèmes de recommandation

4 - ÉTUDE DE CAS D'UNE PLATEFORME DE RECOMMANDATION : MAHOUT

  • 4.1 - Étape 1 : téléchargement de la collection de données
  • 4.2 - Étape 2 : prérequis
  • 4.3 - Étape 2 : téléchargement et compilation de Mahout
  • 4.4 - Étape 3 : programmation

5 - ÉBAUCHE D'ENCADREMENT DU SYSTÈME

  • 5.1 - Dérives du système
  • 5.2 - Cadre normatif

6 - CONCLUSION

7 - GLOSSAIRE – DÉFINITIONS

Article de référence | Réf : H7245 v1

Glossaire – Définitions
Systèmes de recommandation

Auteur(s) : Gérald KEMBELLEC, Max CHEVALIER, Damien DUDOGNON

Date de publication : 10 nov. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article a pour objectif de présenter les fondements des systèmes de recommandation. Ces systèmes sont très développés aujourd'hui, mais demeurent au final peu visibles, l'utilisateur ne percevant que le résultat, à savoir une liste de suggestions. Les champs d'application de ces systèmes de recommandation sont divers et variés (suggestion de films, de produits marchands, de services...).Cet article présente les champs d'application les plus représentatifs. Les différentes dimensions (culturelles, légales ainsi qu'algorithmiques) sont également abordées sans oublier le niveau implantation au travers de différents outils tels qu'Excel, PHP ou encore java/Mahout.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Recommender systems

This paper presents the basic principles of recommender systems. These systems are strongly developed today yet are invisible to the end user, who perceives only the result, i.e. a list of recommendations. The fields of application of these recommender systems are varied and numerous (suggestions for movies, marketable products, services, etc.). In this paper we present the most representative fields of application. The different dimensions (cultural, legal and algorithmic applications) are also addressed, together with the implementation level through several tools such as Excel, PHP and java / Mahout.

Auteur(s)

  • Gérald KEMBELLEC : Maître de conférences - Docteur en sciences de l'information et de la communication - CNAM, Laboratoire Dispositifs d'information et de communication à l'ère numérique – Paris, Île-de-France, France

  • Max CHEVALIER : Maître de conférences - Docteur en informatique - Institut de recherche en informatique de Toulouse, Université de Toulouse, Toulouse 3, France

  • Damien DUDOGNON : Ingénieur R&D - Docteur en informatique - Overblog, Toulouse, France

INTRODUCTION

Dans le contexte numérique actuel, caractérisé par une surabondance d'informations, que l'on appelle infobésité ou déluge informationnel, il apparaît que les capacités humaines ne permettent pas l'analyse exhaustive de l'offre d'un corpus au sein d'une plateforme. Même dans le cadre de l'utilisation d'un moteur de recherche intégré, les résultats pertinents sont généralement noyés dans un « bruit » informationnel, ce qui en empêche, ou tout du moins en ralentit, le repérage. Pour aider l'esprit humain dans son processus de sélection, des systèmes de recommandation grand public ont vu le jour dans la dernière décennie du vingtième siècle.

Un système de recommandation est un outil de filtrage de l'information offrant à un usager l'assistance à la sélection personnalisée face à un catalogue d'items. Les cadres d'application de ces systèmes sont multiples : au sein des réseaux socionumériques, du marketing digital avec la relation client pour la vente en ligne ou encore des services personnalisés liés à une offre culturelle.

Après un tour d'horizon des domaines d'application des moteurs de recommandation, les principales stratégies de recommandations sont présentées sur les plans théoriques et algorithmiques. La personnalisation de ces systèmes peut se baser sur plusieurs méthodes algorithmiques, principalement orientées autour des aspects sociaux et/ou sur les caractéristiques des objets manipulés. Cet article propose également une mise en lumière de l'approche collaborative au travers d'un exemple reposant sur des outils open source.

Avec un recul de plus de 20 ans sur ces dispositifs, des questionnements émergent autour de l'éthique, du respect de la vie privée et de la confiance de l'usager. Des réflexions sont ainsi menées pour une normalisation et un encadrement légal du phénomène de recommandation.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

Algorithms   |   recommendation   |   implementation   |   social networks   |   marketing

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-h7245


Cet article fait partie de l’offre

Documents numériques Gestion de contenu

(76 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

7. Glossaire – Définitions

Clustering

Méthode de regroupement d'items proposant des caractéristiques communes en clusters (ensembles).

Corrélation ; Correlation

Une corrélation est le lien existant entre des variables. Dans le cadre des systèmes de recommandations, des items peuvent être corrélés entre eux par des caractéristiques intrinsèques ou par des évaluations d'usagers. Des usagers peuvent être corrélés entre eux pour des raisons sociales ou par les évaluations similaires qu'ils ont produites d'ensembles d'items.

CRM Gestion de la relation client ; Customer Relationship Management

Ensemble de techniques et d'outils permettant de récolter et traiter les données relatives à la clientèle ou aux prospects du segment de marché pour améliorer le service et fidéliser la clientèle.

Journal ; Log

Dans un système d'information, les activités liées à un processus sont enregistrées de manière automatique séquentielle dans un fichier journalisé.

Sérendipité ; Serendipity

La sérendipité est la découverte, par ouverture d'esprit ou par hasard, d'un élément intéressant éloigné de ce qui était initialement recherché.

Shilling

Le shilling est une technique frauduleuse de modification de la valeur d'un item dans un système de recommandation dans le but d'augmenter sa visibilité. Les plateformes comme Amazon, Trip Adviser ou Yelp sont victimes de type d'attaques pour frauder le système et valoriser des items artificiellement.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Documents numériques Gestion de contenu

(76 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Glossaire – Définitions
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - RESNICK (P.), IACOVOU (N.), SUCHAK (M.), BERGSTROM (P.), RIEDL (J.) -   GroupLens.  -  In Proceedings of the 1994 ACM conference on Computer supported cooperative work – CSCW '94, p. 175-186 (1994).

  • (2) - STENGER (T.), COUTANT (A.) -   La prescription ordinaire sur les réseaux socionumériques.  -  In Médias 09, entre communautés et mobilité, p. 1-24 (2009).

  • (3) - DE CERTAU (M.) -   L'invention du quotidien. Tome 1 : Arts de faire.  -  Folio. Gallimard, Paris(1990).

  • (4) - COUTANT (A.) -   Quelle place pour l'innovation dans les médias sociaux ?  -  Commun. Organ., n° 43, p. 123-134, juin 2013.

  • (5) - STENGER (T.), COUTANT (A.) -   Web 2.0 et médias sociaux.  -  In E-marketing et E-commerce. Concepts, Outils, Pratiques, Management., STENGER (T.) ET BOURLIATAUX-LAJOINIE (S.), Éd. Dunod, Paris, p. 63-115 (2011).

  • ...

1 Outils logiciels

The R Project for Statistical Computing. Sous licence GPL, disponible pour plateformes Microsoft, Apple, Unix et Linux à l'URL http://www.r-project.org/ (page consultée le 3 août 2015).

BiostatGV propriété de l'institut Pierre Louis d'Épidémiologie et de Santé Publique UMR S 1136, affilié à l'INSERM et l'Université Pierre et Marie Curie (anciennement UMR S 707). Interface PHP en ligne avec R pour un calcul de corrélation, permet également de formater des valeurs d'entrée vers R depuis un tableur par copier/coller http://marne.u707.jussieu.fr/biostatgv/?module=tests/pearson (page consultée le 3 août 2015).

Mahout, Copyright © 2014, The Apache Software Foundation, Sous licence...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Documents numériques Gestion de contenu

(76 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS