Présentation
EnglishRÉSUMÉ
La croissance significative des services IP, par exemple pour la diffusion de programmes télévisés, soulève de nouveaux défis pour les opérateurs de réseaux. Le mode de transmission multicast IP ne suffit plus, et l'utilisation d'arborescences MPLS n'a pas été massivement adoptée. Aussi, la possibilité de combiner la dynamique multicast IP avec la robustesse des arborescences MPLS est une approche facilitant l'ingénierie et l'exploitation des services déployés sur de telles structures. Cette nouvelle approche combinatoire devrait permettre aux opérateurs de services IPTV ou de vidéoconférence sur IP une amélioration de la qualité et une exploitation facilitée.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Christian JACQUENET : Directeur des programmes stratégiques réseaux IP France Telecom Orange
INTRODUCTION
Les services de diffusion IP s'appuient sur les schémas de communication de groupe de type « 1 vers N », où une source de contenus diffuse vers n récepteurs, ou de type « N vers P », où N émetteurs ont la capacité de diffuser vers P récepteurs (cas d'un service de visioconférence, par exemple). Ces modes de communication de groupe reposent majoritairement sur l'utilisation du mode de transmission multicast IP pour ce qui concerne les services de diffusion de programmes télévisés en temps réel, par exemple.
Le mode de transmission multicast IP se caractérise par l'établissement et la maintenance d'arbres de distribution établis à l'initiative des récepteurs et le long desquels le trafic est acheminé.
Toutefois, le mode de transmission multicast IP présente des limitations intrinsèques aux mécanismes protocolaires mis en jeu : par exemple, une source ne dispose à aucun moment de la moindre information concernant la localisation et la densité de répartition des récepteurs, ce qui peut affecter le niveau de qualité associé à la fourniture des contenus, tel que perçu par les utilisateurs finaux.
De même, le mode de transmission multicast IP ne fournit aucune garantie stricte quant à la bande passante nécessaire pour véhiculer les différents flux multicast sans dégradation significative de telle sorte qu'elle ne soit pas perceptible par l'utilisateur final (phénomène de pixellisation de l'image, par exemple).
En outre, il n'est pas possible de tenir compte des capacités d'accès au réseau d'un utilisateur final pour influencer la manière dont l'arborescence multicast sera construite et, par exemple, permettre à la source de décider de diffuser un programme télévisé en définition standard (SD, Standard Definition) ou en haute définition (HD, High Definition).
Ces limitations ont conduit l'organisme de standardisation IETF (Internet Engineering Task Force) à engager depuis quelques années des travaux portant sur l'exploitation de fonctions d'ingénierie de trafic MPLS (Multi-Protocol Label Switching), capables d'établir des arborescences Point-à-Multipoint, dont les caractéristiques, en termes de bande passante garantie et de robustesse, sont de nature à pallier aux lacunes du mode de transmission multicast IP.
Cependant, les spécifications publiées par l'IETF sont aujourd'hui très peu appliquées, voire pas déployées du tout par les opérateurs et autres fournisseurs de services IPTV. Les raisons de cette réticence factuelle sont multiples :
-
l'état de l'art technologique montre que peu de constructeurs de routeurs supportent aujourd'hui les fonctions décrites dans ces standards, et imposent le plus souvent une configuration statique des différents routeurs susceptibles de participer à l'établissement et à la maintenance des arborescences Point-à-Multipoints (P2MP) MPLS ;
-
les standards actuels imposent une ingénierie telle que c'est le routeur directement connecté à la source de contenus qui sera la racine de l'arborescence P2MP, à laquelle les différentes branches seront greffées selon la connaissance a priori des arbres « feuilles » ...et des récepteurs auxquels ces feuilles sont connectées.
Cet article a pour objectif de décrire une troisième voie, celle de ce qui pourrait être défini comme le meilleur des mondes multicast IP et ingénierie de trafic MPLS, où les arborescences P2MP MPLS seraient établies à l'initiative des récepteurs (donc une dynamique adaptée à la localisation des récepteurs, ainsi qu'à leurs capacités d'accès au réseau et à leurs centres d'intérêt), tout en étant capables de fournir des garanties strictes en termes de bande passante et de robustesse (donc en améliorant significativement les problèmes de qualité de service induits par l'usage du seul mode de transmission multicast IP).
Cette nouvelle approche n'est pas une révolution.
Il s'agit plutôt d'une évolution des mécanismes d'ingénierie de trafic MPLS utilisés pour le calcul et l'établissement dynamiques d'arborescences P2MP, capables de prendre en compte les caractéristiques et les besoins des récepteurs.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Réseaux Télécommunications
(141 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Perspectives d'évolution
L'établissement de structures arborescentes MPLS à l'initiative des récepteurs permet d'intégrer une dynamique dont le niveau de qualité associé à la diffusion du contenu et la robustesse de l'arbre peuvent bénéficier.
En effet, la possibilité d'intégrer les capacités d'accès au réseau des récepteurs dans le processus de calcul des branches terminales permettrait de calibrer les caractéristiques (en termes de bande passante, voire de format du contenu à diffuser vers ce récepteur) de ces branches au plus juste, autorisant ainsi une optimisation de l'usage des ressources dans les infrastructures d'accès.
Un récepteur connecté au réseau via une ligne ADSL (Asymmetric Digital Subscriber Line) qui ne disposerait que de quelques Mbit/s de débit descendant ne peut pas recevoir des programmes télévisés en haute définition (lesquels sont généralement codés à 10, voire 12 Mbit/s).
Par contre, un autre récepteur connecté sur une autre ligne ADSL peut bénéficier d'un débit descendant d'une vingtaine de Mbit/s en moyenne (simplement parce qu'il est géographiquement très proche du DSLAM auquel il est connecté, par exemple).
Ainsi, la greffe des branches terminales correspondant à la diffusion du trafic caractéristique des programmes télévisés vers ces deux récepteurs, pourrait utilement bénéficier de leurs contraintes d'accès respectives de façon à fournir un niveau de qualité adapté à ces deux récepteurs, tout en optimisant l'usage des ressources dans l'infrastructure d'accès.
5.1 Vers un contrôle d'accès multicast
La problématique de l'accès aux services IP utilisant les ressources d'un mode de transmission multicast reflète la nécessité de :
-
s'assurer de l'identité des récepteurs, de façon à garantir le fait qu'ils sont habilités à accéder au contenu qu'ils souhaitent recevoir ;
-
diffuser ledit contenu...
Cet article fait partie de l’offre
Réseaux Télécommunications
(141 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Perspectives d'évolution
BIBLIOGRAPHIE
-
(1) - ROSEN (E.), VISWANATHAN (A.), CALLON (R.) - Multiprotocol label switching architecture. - RFC 3031, janv. 2001.
-
(2) - AGGARWAL (R.), PAPADIMITRIOU (D.), YASUKAWA (S.) - Extensions to resource reservation protocol – Traffic engineering (RSVP-TE) for point-to-multipoint TE label switched paths (LSPs). - RFC 4875, mai 2007.
-
(3) - REKHTER (Y.) et al - A border gateway protocol 4 (BGP-4). - RFC 4271, janv. 2006.
-
(4) - OULD-BRAHIM (H.), FEDYK (D.), REKHTER (Y.) - BGP-based auto-discovery for layer-1 VPNs. - RFC 5195, juin 2008.
-
(5) - AWDUCHE (D.), BERGER (L.), GAN (D.), LI (T.), SRINIVASAN (V.), SWALLOW (G.) - RSVP-TE : extensions to RSVP for LSP tunnels. - RFC 3209, déc. 2001.
-
(6) - PAN (P.), SWALLOW (G.), ATLAS (A.) - Fast reroute extensions to RSVP-TE for LSP tunnels. - RFC 4090,...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Réseaux Télécommunications
(141 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive