Présentation

Article

1 - ARCHITECTURE D'UN RÉSEAU LTE-EPC

2 - PRINCIPES GÉNÉRAUX DE LTE

3 - CARACTÉRISTIQUES DU SIGNAL LTE

4 - MULTIPLEXAGE TEMPOREL

5 - CANAUX PHYSIQUES LTE

6 - CHAÎNE DE TRANSMISSION

7 - COUCHE MAC ET PROTOCOLE HARQ

8 - COUCHE RLC

9 - COUCHE PDCP

10 - EXEMPLE DE TRANSMISSION MULTI-SERVICES

11 - ANNEXE – CONSTRUCTION DES SÉQUENCES DE ZADOFF-CHU

Article de référence | Réf : TE7374 v1

Multiplexage temporel
Principes de fonctionnement de l'interface radio LTE

Auteur(s) : Xavier LAGRANGE

Relu et validé le 03 juil. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

L'interface radio LTE (Long Term Evolution) repose essentiellement sur le mode paquet, et la notion de bloc ressource. L'article aborde les caractéristiques du signal transmis, la gestion des formats de transport et les structures liées au multiplexage temporel. Les différents canaux physiques permettent d'assurer l'accès d'un terminal au réseau. La couche MAC permet le multiplexage de différents flux et assure, grâce à un protocole de retransmission, un taux d'erreur modéré. Enfin, RLC assure la qualité de service par des retransmissions si nécessaire et PDCP garantit la sécurité et permet la compression des données et des en-têtes.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Operating principles of the LTE radio interface

The LTE (Long Term evolution) radio interface is essentially based on the packet mode and the notion of resource block. The characteristics of the transmitted signal, management of transport formats and structures related to time division multiplexing are dealt with in this article. The various physical channels ensure the access of a terminal to the network. The MAC layer allows for the multiplexing of different streams and guarantees, via a retransmission protocol, a moderate error rate. Finally, RLC ensures service quality through retransmission, where necessary, and allows for data and header compression.

Auteur(s)

  • Xavier LAGRANGE : Professeur Télécom Bretagne, Institut Mines-Télécom, Cesson-Sévigné, France

INTRODUCTION

Au cours des années 2000, il est apparu assez rapidement que le système UMTS (Universal Mobile Telecommunications System), même dans sa version haut-débit (High Speed Data Packet Access), resterait limité en terme de débit, de latence et de capacité, du fait de sa transmission basée sur le CDMA et de la complexité de son architecture. En 2004, le 3GPP (3rd Generation Partnership Project) a donc lancé un groupe de travail pour des évolutions à long terme, ou LTE pour Long Term Evolution, de l'interface radio des systèmes de 3e génération. Le travail de ce groupe a conduit à la spécification d'une interface radio totalement nouvelle et a déclenché un travail analogue de refonte complète de l'architecture des réseaux cœurs. L'ensemble de ce nouveau système est couramment désigné par LTE bien que le terme LTE ne s'applique qu'à l'interface radio.

Cet article se focalise sur la présentation de l'interface radio tout en présentant l'architecture générale du système. Le 3GPP produit des documents de spécifications par vagues successives appelées Release. L'interface radio LTE est définie dans un ensemble de recommendations publiées lors de la Release 8 (les releases précédentes n'incluent que les systèmes GSM et UMTS). Cet article en présente les caractéristiques essentielles et s'appuie sur la Release 8. Ce qui est présenté reste cependant valide pour les Releases ultérieures.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

multiple access   |   protocol stack   |   cellular networks   |   mobile internet

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-te7374


Cet article fait partie de l’offre

Réseaux Télécommunications

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

4. Multiplexage temporel

4.1 Trames et sous-trames

Le cadencement de base en LTE est d'une milliseconde (figure 6). Cependant, certaines informations doivent être transmises régulièrement, mais pas à chaque milliseconde. Des structures plus longues sont définies pour permettre d'organiser des séquencements réguliers :

  • la trame ou frame, composée de 10 sous-trames, dure par conséquent 10 ms  ;

  • la multitrame ou multi-frame, composée de 1 024 trames, dure 10,24 secondes.

Une trame est identifiée par un compteur SFN pour System Frame Number dans la multitrame. Certaines transmissions sont faites uniquement pour certaines valeurs de SFN.

Exemple

Les informations systèmes ne sont transmises que dans la sous-trame 0 des trames vérifiant SFN mod 4 = 0 ; le terminal peut se contenter de décoder seulement 4 sous-trames sur une période de 40 sous-trames, et se mettre en mode économie d'énergie le reste du temps s'il n'est intéressé que par les informations systèmes.

HAUT DE PAGE

4.2 Duplexage

L'interface radio LTE permet deux types de duplexage :

  • avec le FDD (Frequency Division Duplex), une porteuse est utilisée pour la voie descendante et une autre pour la voie montante (figure 12). Pendant une sous-trame, on a donc simultanément deux transmissions ;

  • avec le TDD (Time Division Duplex ), la même porteuse est utilisée, mais une sous-trame est réservée à un sens de transmission (figure 13).

Afin de permettre la transmission des...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux Télécommunications

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Multiplexage temporel
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - 3GPP -   Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access (E-UTRAN) – Overall description. Stage 2.  -  TS 36.300, 3rd Generation Partnership Project (3GPP), sept. 2008.

  • (2) - 3GPP -   Evolved universal terrestrial radio access (E-UTRA) – Medium access control (MAC) protocol specification.  -  TS 36.321, 3rd Generation Partnership Project (3GPP), sept. 2008.

  • (3) - 3GPP -   Evolved universal terrestrial radio access (E-UTRA) – Multiplexing and channel coding.  -  TS 36.212, 3rd Generation Partnership Project (3GPP), sept. 2008.

  • (4) - 3GPP -   Evolved universal terrestrial radio access (E-UTRA) – Packet data convergence protocol (PDCP) specification.  -  TS 36.323, 3rd Generation Partnership Project (3GPP), sept. 2008.

  • (5) - 3GPP -   Evolved universal terrestrial radio access (E-UTRA) – Physical channels and modulation.  -  TS 36.211, 3rd Generation Partnership Project (3GPP), sept. 2008.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux Télécommunications

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS