Présentation
EnglishRÉSUMÉ
Des progrès importants ont été faits au cours des dernières années en ce qui concerne les taux de reconnaissance de la parole (proches de ceux d’un être humain), mais le niveau de compréhension demeure très faible. Les systèmes sont fondés sur une modélisation statistique de la langue parlée : modèles acoustiques de Markov cachés (Hidden Markov Models, HMM) et modèles n-grammes mémorisant les probabilités conditionnelles de séquences d’unités linguistiques. Les progrès récents proviennent du couplage de ces modèles statistiques à des modèles neuronaux profonds, comportant un grand nombre de couches cachées, entraînés à l’aide d’énorme quantité de données. Les applications concernent la dictée vocale, la transcription de médias (radio, télévision) et surtout la télématique vocale (assistants vocaux).
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Paul HATON : Professeur à l’Université de Lorraine, LORIA/INRIA – Membre de l’Institut universitaire de France
INTRODUCTION
L’utilisation de la parole comme mode de communication entre un homme et une machine a été largement étudiée au cours des dernières décennies. Nous nous intéressons dans cet article à la reconnaissance automatique de la parole (RAP), c’est-à-dire à l’ensemble des techniques permettant de communiquer oralement avec une machine. La RAP présente un intérêt pratique indéniable, dans certaines conditions d’utilisation (accès à distance, charge de travail importante, handicapés, etc.). Des produits commerciaux existent depuis plus de trente ans, d’abord essentiellement pour la reconnaissance de mots isolés et enchaînés puis maintenant pour des phrases prononcées continûment. La plupart sont fondés sur des algorithmes de programmation dynamique et des modèles stochastiques (sources de Markov). Néanmoins, des problèmes restent à résoudre pour accroître la robustesse de ces systèmes et étendre leurs capacités de dialogue. Les recherches menées actuellement portent ainsi sur la reconnaissance de parole bruitée, le traitement d’énoncés incomplets ou incorrects, la définition de procédures de dialogue, etc.
VERSIONS
- Version archivée 1 de août 1998 par Jean-Paul HATON
- Version archivée 2 de nov. 2012 par Jean-Paul HATON
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Documents numériques Gestion de contenu > Documents numériques : technologies d'acquisition et de restitution > Reconnaissance automatique de la parole > Analyse du signal de parole
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(240 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Analyse du signal de parole
Nous avons déjà noté la grande redondance du signal vocal. Le traitement automatique de la parole nécessite de réduire cette redondance, à l’aide de traitements appropriés, pour diminuer les temps de traitement et l’encombrement en mémoire. Par ailleurs, et quelquefois simultanément, le traitement du signal vocal permet d’extraire des paramètres pertinents pour la reconnaissance (caractéristiques de sons bruités, fréquences des formants, etc.).
Une voyelle peut être caractérisée par trois zones de fréquences données, appelées formants. Les fréquences de formants de sons tels que les voyelles et certaines consonnes voisées correspondent au maximum d’énergie dans le spectre de ces sons, c’est-à-dire approximativement aux fréquences de résonance du conduit vocal dans la configuration correspondante.
Les dispositifs utilisés peuvent être analogiques : cependant, avec l’évolution de l’électronique numérique et de l’informatique, les techniques numériques sont désormais généralisées. Après numérisation du signal vocal à l’aide d’un convertisseur analogique-numérique (CAN), les traitements sont alors effectués par logiciel soit par des composants spécialisés permettant de faire l’analyse de la parole en temps réel, soit de plus en plus par les puces de microprocesseurs.
On peut classer en deux grandes catégories les méthodes de traitement du signal :
-
les méthodes générales, valables pour tout signal évolutif dans le temps, en particulier les analyses spectrales (transformée de Fourier, cf. § 3.1) ;
-
les méthodes se référant à un modèle de production du signal vocal ou d’audition.
3.1 Méthodes générales
Les méthodes spectrales occupent une place prépondérante en analyse de la parole : l’oreille effectue, entre autres, une analyse fréquentielle du signal qu’elle perçoit ; de plus, les sons de la parole peuvent être assez bien décrits en termes de fréquences.
La transformée de Fourier permet d’obtenir le spectre d’un...
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(240 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Analyse du signal de parole
BIBLIOGRAPHIE
-
(1) - RABINER (L.), HUANG (B.H.) - Fundamentals of speech recognition. – - Prentice-Hall, Englewood Cliffs (1993).
-
(2) - JUNQUA (J.-C.), HATON (J.-P.) - Robustness in automatic speech recognition. – - Kluwer Academic, Dordrecht (1996).
-
(3) - BOITE (R.), BOURLARD (H.), DUTOIT (T.), HANCQ (J.), LEICH (H.) - Traitement de la parole. – - Presses polytechniques et universitaires romandes, Lausanne (2000).
-
(4) - MINKER (W.), BENNACEF (S.) - Reconnaissance vocale et dialogue homme-machine. – - Eyrolles, Paris (2000).
-
(5) - MARIANI (J.) (éd.) - Reconnaissance de la parole : traitement automatique du langage parlé. – - Hermes – Science – Lavoisier, Paris (2002).
-
(6) - COHEN (M.), GIANGOLA (J.), BALOGH (J.) - Voice...
HTK (HMM ToolKit) : logiciel libre destiné au développement d’applications complètes de reconnaissance de la parole fondées sur MMC http://www.htk.eng.cam.ac.uk/
VISPER (Visual speech processing system) : logiciel libre permettant de visualiser les étapes de reconnaissance par programmation dynamique et par MMC développé par l’Université Technique de Liberec, Tchéquie https://www.ite.tul.cz/speechlabe/index.php/old-projects/visper.html
SNOORI : logiciel libre d’analyse, de visualisation et d’étiquetage de la parole développé au LORIA par Yves Laprie pour les recherches en phonétique, perception et traitement automatique de la parole
Bases de données de parole étiquetée disponibles pour de nombreuses langues par l’intermédiaire des organismes :
LDC, Linguistic Data Consortium http://www.ldc.upenn.edu/
ELRA, European Language Resources Association http://www.elra.info/
Dragon Naturally Speaking de Nuance http://www.nuance.fr/Dragon12
HAUT DE PAGEConstructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Sociétés spécialisées...
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(240 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive