Présentation
En anglaisRÉSUMÉ
Contrairement aux autres études dans ce domaine, l'étude de l'acoustique des salles ne peut faire l'objet d'une modélisation mathématique décrivant la propagation du son. Ce dossier décrit le processus de linéarisation d'un ensemble complexe de variables qui, contrairement aux modèles traditionnels, ne fait appel ni à la hiérarchisation, ni au paramétrage traditionnel. Il comprend un schéma méthodologique de six propositions portant sur la distribution virtuelle des sources, la recherche d'un critère de compromis entre clarté et homogénéité, le choix d'une bande de fréquence, la détermination de l'angle d'ouverture des sources et le découpage du plan d'écoute. La mise en application du modèle est analysée dans le cas où les sources sont prédéterminées et dans celui où, seul le site est connu.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Unlike other studies carried out in this field, the study of the acoustics of rooms cannot be mathematically modelled in order to describe the propagation of sound. This article presents the linearization process of a complex set of variables, which, unlike in traditional models, does not involve prioritization or traditional parameterization. It includes a methodological scheme involving six proposals concerning the virtual distribution of sources, the search for a compromise criterion between clarity and homogeneity, the choice of a frequency band, the determination of the opening angle of sources and the delineation of the listening plane. The implementation of the model is analyzed in the case where sources are predetermined and in the case where only the site is known.
Auteur(s)
-
Jacques JOUHANEAU : Professeur, ancien titulaire de la chaire d'Acoustique du CNAM
INTRODUCTION
Contrairement aux autres domaines de l'acoustique (comportement vibratoire des sources, rayonnement, propagation, électroacoustique, etc.) qui peuvent être correctement abordés à partir de lois physiques fondamentales et de leur expression mathématique, l'acoustique des salles ne peut, en aucune manière, faire l'objet d'une modélisation décrivant mathématiquement le comportement du son dans une salle (cf. introduction de l'article [C 3360]). Pour suppléer à cette carence, les différents chercheurs qui se sont intéressés à cette question depuis l'Antiquité ont proposé une multitude de « petites formules » d'origine diverse destinées à évaluer l'importance relative d'une ou plusieurs variables en un point donné de la salle et pour une configuration bien définie. C'est ainsi que l'on dispose aujourd'hui d'un jeu de relations issues de considérations tantôt géométriques, tantôt statistiques, tantôt ondulatoires, mais le plus souvent empiriques ou psychophysiques.
Ces relations peuvent prédire la valeur d'une variable par différentes méthodes, mais ne sont que rarement concordantes sur le résultat et, de toute façon, quand elles le sont pour une configuration donnée, elles ne le sont plus dès lors qu'on s'écarte un tant soit peu de cette situation de référence (déplacement du point de mesure, de la bande de fréquence, variation du nombre d'auditeurs, de la température ...).
Il en résulte que la gestion de la multitude de relations spécifiques de l'acoustique des salles est une opération délicate qui demande, outre les connaissances de ces différentes lois, une aptitude particulière à sélectionner les plus pertinentes et à effectuer correctement les transitions qui les séparent ou les opposent. Si la difficulté rencontrée reste aisément contournable sur des petits locaux, il n'en est pas de même pour les salles complexes qui demandent une vision globale beaucoup plus conséquente. Nous avons vu dans les articles [BR1010] et [BE 1012] deux aspects d'une stratégie d'approche cohérente pour l'optimisation de certains paramètres de l'acoustique des ensembles complexes.
L'exemple proposé dans cet article [BR1014] illustre parfaitement toutes les phases d'une approche méthodologique et la conclusion fait ressortir le fait qu'un paramètre essentiel au départ (ici le prix) peut tout à fait être négligé dans la modélisation et entrer malgré tout de plain-pied dans le processus de mise en application et le respect du cahier des charges.
Linéariser le schéma de sonorisation d'une salle est une opération très complexe du fait qu'elle met en jeu un nombre incalculable de paramètres.
Les principaux sont :
-
tous les paramètres relatifs à l'acoustique de la salle ;
-
les paramètres relatifs aux caractéristiques des sources (caractéristiques de puissance, de rendement, de spectre, de directivité...) ;
-
les paramètres relatifs à leur disposition (nombre, position, orientation, niveaux relatifs) ;
-
les paramètres relatifs au couplage électroacoustique (réverbération, effet Larsen, annulations...) ;
-
les paramètres relatifs à la psychoacoustique des salles. (réverbération, clarté, spatialisation) ;
-
les paramètres relatifs à la répartition de l'énergie sonore (équilibre et homogénéité) ;
-
les paramètres relatifs aux coûts d'investissement, de fonctionnement et de maintenance.
Pour comprendre l'intérêt de la linéarisation, il suffit de rappeler que la sonorisation d'une petite salle implique la mise en jeu de plus de 100 paramètres, ce qui, dans l'hypothèse d'un traitement expérimental, représenterait 3100 (5.1047) configurations à tester !
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Environnement - Sécurité > Bruit et vibrations > Acoustique des salles et de l'environnement > Guide méthodologique pour l'étude acoustique d'une salle - Approche linéarisée > Stratégies d'élaboration du modèle
Cet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Stratégies d'élaboration du modèle
La méthode et l'ordre d'analyse des paramètres dépendent essentiellement des données dont on dispose au départ.
Deux stratégies sont envisageables.
2.1 Première méthode : les sources sont connues
Les données (outre celles de l'acoustique du local) sont :
-
les sources et leur directivité ;
-
la distance du plan des sources au plan d'écoute.
On détermine successivement à partir du modèle PPCE :
-
l'angle de première annulation ;
-
le rayon du piston équivalent ;
-
l'angle d'ouverture à 2000 Hz ;
-
les cercles ou les ellipses du plan d'écoute ;
-
la clarté locale ;
-
l'homogénéité.
2.2 Seconde méthode : seul le site est connu
Les données du problème sont :
-
la géométrie de la salle ;
-
les contraintes d'utilisation (accessibilité, points de fixation, esthétique, etc.) ;
-
la disposition du public.
On procède alors à l'inverse du cas précédent :
-
on définit le plan d'écoute ;
-
on trace les cercles, ou les ellipses, compatibles avec le cahier des charges tout en cherchant à maintenir le nombre de sources le plus faible possible ;
-
on calcule les limites acceptables pour les distances sources-plan d'écoute et les angles d'ouverture correspondants ;
-
on détermine la meilleure valeur de CH comprise dans la fourchette précédente ;
-
on fixe définitivement le nombre, l'ouverture et la position des sources ;
-
on cherche les enceintes correspondant à l'angle d'ouverture prévu.
Le champ de liberté est plus important dans cette configuration que dans la précédente. Il est donc recommandé de faire appel à quelques règles simplificatrices pour éviter de tomber dans une situation où le calcul perd toute signification physique.
La plupart des simplifications reposent sur les propriétés mathématiques de la clarté locale.
...Cet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Stratégies d'élaboration du modèle
BIBLIOGRAPHIE
-
(1) - BERANEK (L.L.) - Music, Acoustics and Architecture. - J. Wiley & Sons (1962).
-
(2) - CREMER (L.), MÜLLER (H.A.) - Principles and applications of room acoustics. - Applied Science pub., Chapitre II.3 (1973).
-
(3) - KUTTRUFF (H.) - Room Acoustics. - Applied Science pub., Chapitre V.6 (1973).
-
(4) - JOUHANEAU (J.) - Acoustique des salles et sonorisation. - Éd. Lavoisier, 2e édition, Chapitres 2 et 19 (2003).
-
(5) - JOUHANEAU (J.) - Acoustique des salles et sonorisation. Exercices et problèmes corrigés. - Éd. Lavoisier, § 2.8, 2.9 et 3.7 (1997).
-
(6) - GRASSIN (I.) - Modélisation et simulation du champ sonore réverbéré dans une salle longue. - Mémoire de fin d'études, École Centrale de Paris (2000).
- ...
DANS NOS BASES DOCUMENTAIRES
-
Acoustique des salles.
1.1 Organismes – Fédérations – Associations (liste non exhaustive)
Laboratoire d'acoustique de la SNCF avec la collaboration de Corinne Fillol.
Laboratoire d'acoustique de l'AREP avec la collaboration d'Agnès Drevon.
HAUT DE PAGECet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive