Présentation

Article

1 - DÉFINITION DE LA NOTION D’OPINION

  • 1.1 - Multiples facettes de l’opinion
  • 1.2 - Opinion vue comme un modèle structuré
  • 1.3 - Exemple

2 - EXTRACTION AUTOMATIQUE DE L’OPINION

3 - VERS UNE EXTRACTION PLUS FINE DES OPINIONS

  • 3.1 - Analyse de l’opinion au-delà de la phrase
  • 3.2 - Opinions implicites
  • 3.3 - Opinion et langage figuratif : cas de l’ironie et du sarcasme
  • 3.4 - Rôle des informations extra-linguistiques
  • 3.5 - Analyse des intentions

4 - CONCLUSION

5 - GLOSSAIRE

Article de référence | Réf : H7270 v1

Glossaire
Analyse automatique d’opinions - États des lieux et perspectives

Auteur(s) : Farah BENAMARA ZITOUNE

Date de publication : 10 nov. 2016

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Le Web est devenu une source d’information incontournable grâce à la quantité et à la diversité des contenus textuels porteurs d’opinions générés par les internautes. Ces contenus sont multiples : blogs, commentaires, forums, réseaux sociaux, etc. Devant cette abondance de données, le développement d’outils pour extraire, synthétiser et comparer les opinions exprimées sur un sujet donné devient crucial. Cet article dresse un panorama des principales approches en analyse automatique d’opinions. Trois questions fondamentales sont abordées : comment reconnaître les portions de textes qui renseignent l’utilisateur sur l’opinion qu’il recherche ? Comment évaluer la polarité des opinions qui en ressortent ? Comment présenter le résultat de manière pertinente à l’utilisateur ?

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Farah BENAMARA ZITOUNE : Maître de conférences en informatique à l’Université Paul Sabatier de Toulouse, - Institut de Recherche en Informatique de Toulouse (IRIT), Toulouse, France

INTRODUCTION

Aujourd’hui, le Web est devenu une source d’information incontournable grâce à la quantité et à la diversité des contenus textuels porteurs d’opinions exprimés par les internautes. Ces contenus sont multiples : blogs, commentaires, forums, réseaux sociaux, réactions ou avis, de plus en plus centralisés par les moteurs de recherche. Devant cette abondance de données et de sources, le développement d’outils pour extraire, synthétiser et comparer les opinions exprimées sur un sujet donné devient crucial. L’intérêt de ce type d’outils est considérable, pour les sociétés qui souhaitent obtenir un retour client sur leurs produits ou leur image de marque comme pour les particuliers souhaitant se renseigner pour un achat, une sortie ou un voyage.

C’est dans ce contexte que l’analyse d’opinions (communément appelée sentiment analysis ou opinion mining en anglais) a vu le jour. Les premiers travaux en extraction automatique d’opinions remontent à la fin des années 1990 avec, en particulier, des études traitant de la détermination de la polarité des adjectifs dans les documents, c’est-à-dire la détermination du caractère positif ou négatif de l’opinion véhiculée par les adjectifs. Depuis les années 2000, un grand nombre de travaux ont été publiés sur le sujet, faisant de l’extraction d’opinions l’un des domaines les plus actifs en Traitement Automatique des Langues (TAL) [H7258] et en fouille de données, avec plus de 26 000 publications recensées sur Google Scholar. Il est important de noter qu’avant d’être un domaine de recherche en informatique, l’analyse d’opinions a été largement étudiée en linguistique , psychologie , sociologie et en économie . C’est donc un domaine multidisciplinaire nécessitant des outils et techniques diverses comme nous le verrons tout au long de cet article.

Le développement de systèmes d’analyse d’opinions n’est pas simple et nécessite de se confronter à plusieurs difficultés : comment reconnaître les parties des textes qui renseignent l’utilisateur sur l’opinion qu’il recherche ? Comment évaluer la qualité des opinions qui en ressort : sont-elles plutôt positives, plutôt négatives ? Comment présenter le résultat de manière pertinente à l’utilisateur ?

Cet article a pour objectif de répondre à ces questions en dressant un panorama des principales approches actuelles en analyse d’opinions. Après une définition de la notion d’opinion et de ses principales caractéristiques, nous présentons les méthodes d’extraction les plus populaires. Par des exemples concrets, nous verrons que ces méthodes atteignent vite leurs limites car elles ne prennent pas en compte la notion de contexte, pourtant primordiale à une analyse fine des opinions. Nous verrons alors les nouvelles méthodes qui ont été proposées dans la littérature scientifique pour incorporer cette notion. Nous terminons cet article par une discussion sur les perspectives de recherche dans le domaine.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-h7270


Cet article fait partie de l’offre

Technologies logicielles Architectures des systèmes

(240 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

5. Glossaire

Traitement Automatique des Langues (TAL) ; natural language processing

Le TAL est une branche de l’intelligence artificielle qui a pour but l’analyse (mais aussi la génération) de données textuelles, généralement non structurées, par le biais de traitements linguistiques à plusieurs niveaux :

  • le niveau du mot. On parle alors d’analyse morphologique et lexicale ;

  • le niveau de la proposition ou de la phrase. On parle alors d’analyse syntaxique ;

  • le niveau du texte ou du document. C’est l’analyse de discours ;

  • le niveau pragmatique, qui permet d’appréhender le sens des mots/phrases/textes en contexte.

Le lecteur peut se référer à l’article [H7258] qui présente une description complète des enjeux et techniques du TAL.

Fouille de données textuelle ; text mining

La fouille de données textuelles consiste en l’analyse de gros volumes de corpus textuels en considérant chaque texte comme un ’’sacs de mots”. L’objectif est d’extraire à partir de ces corpus de nouvelles connaissances en effectuant des calculs et des analyses statistiques comme des mesures de fréquences, la construction d’index ou encore la classification de corpus.

Entités nommées (EN) ; named entity

Une entité nommée est un mot ou un groupe de mots qui correspond à un nom propre. Une EN est associée à une catégorie sémantique suivant une classification souvent dépendante du domaine d’application, comme la catégorie personne (e.g., Président Hollande), organisation (e.g., ONU), ou encore date (e.g., le 9 octobre 2008).

Relation paradigmatique ; paradigmatic relation

Une relation paradigmatique est une relation entre deux mots ou concepts qui sont sémantiquement proches, comme la relation de synonymie (e.g., voiture et automobile), de composition (e.g., voiture et chassis), d’hyperonymie ou générique-spécifique (e.g., animal et chat).

Apprentissage semi-supervisé ; semi-supervised training

Technique...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies logicielles Architectures des systèmes

(240 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Glossaire
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ABBASI (A.), CHEN (H.), SALEM (A.) -   Sentiment analysis in multiple languages: Feature selection for opinion classification in web forums.  -  ACM Transactions on Information Systems, 26(3):1–34 (2008).

  • (2) - AUE (A.), GAMON (M.) -   Customizing sentiment classifiers to new domains: A case study.  -  In Proceedings of Recent Advances in Natural Language Processing, RANLP (2005).

  • (3) - BENAMARA (F.), ASHER (N.), MATHIEU (Y.), POPESCU (V.), CHARDON (B.) -   Evaluation in discourse: a corpus-based study.  -  Dialogue and Discourse, 7(1):1–49 (2016).

  • (4) - BENAMARA (F.), TABOADA (M.), MATHIEU (Y.) -   Evaluative language beyond bags of words: Linguistic insights and computational applications.  -  Computational Linguistics, in press (2016).

  • (5) - BHATIA (P.), JI (Y.), EISENSTEIN (J.) -   Better document-level sentiment analysis from RST discourse parsing.  -  In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP, pages 2212–2218 (2015).

  • ...

1 Pour en savoir plus

Lexiques de subjectivité

Ressources annotées en subjectivité

Les chercheurs ont mis à disposition un très grand nombre de ressources annotées en opinions afin d’aider la communauté TAL à améliorer les performances de leurs systèmes. En voici une courte liste :

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies logicielles Architectures des systèmes

(240 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS