Présentation
En anglaisRÉSUMÉ
Les signaux émis par les satellites GPS (Global Positioning System) permettent à tout utilisateur équipé du récepteur adéquat de se positionner, n'importe où, sur le globe. Cette navigation ne peut cependant être maintenue quel que soit l'environnement. Les systèmes de navigation inertielle (IRS) permettent eux un positionnement autonome et très précis du porteur, mais cette précision se dégrade en fonction de la qualité des capteurs utilisés. L'intégration des systèmes de navigation GPS et des systèmes de navigation IRS présentent deux intérêts. Elle permet tout d’abord d'améliorer la précision du positionnement, et ensuite, lorsque les signaux GPS ne sont plus disponibles, d’assurer la continuité du positionnement par l'inertie. L’article présente les trois différents types d’architectures de ce couplage, ainsi que des applications.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The signals emitted by GPS satellites (Global Positioning System) enable users equipped with the appropriate receiver to position themselves anywhere on the planet. This navigation cannot however be sustained in every environment. The inertial navigation systems (INSs), on their part, allow for an autonomous and extremely precise positioning of the bearer; however this precision is degraded by the quality of the used receivers. the integration of GPS and INS navigation systems present two advantages. It firstly allows for improving the precision of the positioning and then, where the GPS signals are not available, to ensure the continuity of the positioning via the INS. This article presents the three different types of architecture concerning this coupling, as well as applications.
Auteur(s)
-
Anne-Christine ESCHER : Enseignant-chercheur, laboratoire Traitement du signal pour les télécommunications aéronautiques, École nationale de l'aviation civile
INTRODUCTION
Les systèmes de navigation par satellite, tel le GPS (Global Positioning System), et les systèmes de navigation inertielle présentent de nombreuses complémentarités qui justifient leur intégration.
Les signaux émis par les satellites de la constellation GPS permettent à tout utilisateur équipé du récepteur adéquat de se positionner et de connaître son temps, n'importe où à la surface du globe pourvu qu'il puisse recevoir 4 signaux avec une puissance suffisante. Les avancées en traitement du signal GPS – solutions A-GPS (Assisted GPS) et HSGPS (High Sensitivity GPS) – favorisent l'utilisation du GPS dans des environnements de plus en plus contraints, comme le cœur des villes. Toutefois, elles ne permettent pas d'assurer la continuité de la navigation quel que soit l'environnement.
Les systèmes de navigation inertielle permettent un positionnement autonome du porteur, très précis à court terme. Mais cette précision va se dégrader de plus en plus au cours du temps : la vitesse de cette dérive dépend de la qualité des capteurs utilisés.
Immédiatement nous voyons deux intérêts de l'intégration de ces deux systèmes : elle permet d'améliorer tout d'abord la précision du positionnement, ensuite, lorsque les signaux GPS ne sont plus disponibles, la continuité du positionnement peut être assurée par l'inertie qui aura été recalée.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Le traitement du signal et ses applications > Radiolocalisation > Intégration du GPS avec les systèmes de navigation inertielle > Architectures d’hybridation
Accueil > Ressources documentaires > Électronique - Photonique > Technologies radars et applications > Applications radars > Intégration du GPS avec les systèmes de navigation inertielle > Architectures d’hybridation
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Architectures d’hybridation
Il existe trois façons de coupler les systèmes de navigation GPS et inertiel : couplage lâche, serré ou très serré, selon le type d’information GPS utilisée pour l’intégration.
Tous ces processus sont composés de trois parties.
Dans la première, l’IRS fournit les données inertielles au processus d’intégration, c'est-à-dire les position, vitesse, attitude calculées et les mesures accélérométriques. On l’utilise comme le système de référence.
Le GPS fournira une information différente selon le type d’intégration dans la deuxième partie :
-
la position et la vitesse estimées par le récepteur, pour une hybridation lâche (figure 11). L’inconvénient de ce processus est que lorsque le nombre de satellites poursuivis tombe en dessous de 4, l’intégration n’est plus possible ;
-
les mesures de pseudo-distance de code, et parfois de phase de la porteuse, ainsi que la position calculée des satellites utilisés pour le positionnement, pour un couplage serré (figure 12) ;
-
la sortie des voies I&Q des corrélateurs et la position des satellites poursuivis, pour une hybridation très serrée (figure 13). Dans ce dernier cas, la solution hybridée est utilisée pour améliorer les performances de l’acquisition et des boucles de poursuite du récepteur. C’est le processus le plus complexe.
Le processus d’intégration représente la troisième partie : le plus souvent il s’agit d’un filtre de Kalman, mais d’autres processus peuvent être envisagés comme le filtrage particulaire, par exemple.
Un exemple d’intégration par filtrage de Kalman sera développé dans le paragraphe 4. Le lecteur intéressé par d’autres processus d’intégration pourra, par exemple, se reporter aux travaux de la thèse qui traite de l’intérêt des techniques de filtrage particulaire pour l’hybridation du GPS et des systèmes de navigation inertielle.
3.1 Couplage...
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Architectures d’hybridation
BIBLIOGRAPHIE
-
(1) - BARTH (J.A.), FARRELL (M.) - The global positioning system and inertial navigation - Mc Graw Hill (1999).
-
(2) - RADIX (J.C.) - Systèmes inertiels à composants liés « strap-down » - Cépaduès-éditions (1991).
-
(3) - SIOURIS (G.M) - Aerospace avionics systems A modern synthesis - Academic Press (1993).
-
(4) - BONIN (G.) - Système GPS de positionnement par satellite - Techniques de l'ingénieur (2001).
-
(5) - Van DYKE (K.L.) - Use of standalone GPS for approach with vertical Guidance - Proceedings of ION NTM 2001, 22-24 Jan 2001, Long Beach, pp. 301-309 (2001).
-
(6) - RTCA - Minimum operational performance standards for global positioning system/Wide area augmentation system airborne equipment - DO229-D (2007).
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Thèse
ESCHER (A.-C.) - Apport de l'hybridation GPS/IRS au contrôle d'intégrité des mesures GNSS - Mémoire de thèse, Institut National Polytechnique de Toulouse (2003).
Articles – livres
KUBRAK (D.) - Vehicular navigation using a tight integration of aided-GPS and low-cost MEMS sensors - Proceedings of ION NTM 2006, Monterey, CA (18-20 jan 2006).
SPANGENBERG (M.) - JULIEN (O.) - CALMETTES (V.) - DUCHATEAU (G.) - Urban navigation system for automotive applications using HSGPS, inertial and wheel speed sensors - Proceedings of ENC'GNSS 2008, Toulouse, France (23-25 avril 2008).
GREWAL (M.S.) - ANDREWS (A.P.) - Kalman filtering – Theory and practice - Pentice Hall (1993).
TITTERTON (D.H.) - WESTON (J.L.) - Strapdown inertial navigation Technology - 2nd edition, AIAA & IEE (2004).
BRUCKNER (J.M) - HWANG (P.Y) - Method and apparatus for achieving sole means navigation from global navigation satellites systems - United States Patent #6,317,688 B1, http://www.uspto.gov (nov. 13, 2001).
DIESEL (J.W.) - Integrated inertial/GPS navigation system - United States Patent #6,417,802 B1, http://www.uspto.gov (jul. 9, 2002).
HAUT DE PAGE
Inertial Navigation System Toolbox for Matlab, GPSoft
HAUT DE PAGECet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive