Présentation

Article

1 - GÉNÉRALITÉS

2 - MÉTHODES EXPÉRIMENTALES D’ÉTUDES STRUCTURALES DE SURFACES

  • 2.1 - Techniques de microscopie en champ proche
  • 2.2 - Techniques de microscopie électronique
  • 2.3 - Techniques de diffusion d’ions
  • 2.4 - Techniques de diffraction

3 - MORPHOLOGIE DE LA SURFACE D’UN SOLIDE

4 - STRUCTURES ATOMIQUES DES SURFACES

5 - TRANSITIONS DE PHASE

  • 5.1 - Déconstruction
  • 5.2 - Ordre-désordre à la surface d’alliages
  • 5.3 - Transition rugueuse
  • 5.4 - Préfusion de surface

6 - STRUCTURES ARTIFICIELLES

  • 6.1 - Manipulation atomique
  • 6.2 - Nanolithographie

7 - CONCLUSION

Article de référence | Réf : A1365 v1

Morphologie de la surface d’un solide
Structure de surface des solides

Auteur(s) : Jean-Marc GAY

Date de publication : 10 oct. 1996

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Jean-Marc GAY : Docteur ès Sciences - Chargé de recherche – Centre de recherche sur les mécanismes de la croissance cristalline CNRS – Marseille Luminy

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les surfaces des solides constituent aujourd’hui des formes de la matière condensée qui peuvent présenter un intérêt technologique de première importance autant dans le domaine de l’électronique, de l’optique ou du magnétisme, que dans celui de l’adhésion ou de la tribologie, ou bien de la catalyse. La structure particulière des surfaces solides mérite d’être précisément contrôlée pour une bonne compréhension des phénomènes qui s’y produisent. Le terme de structure est ici considéré dans un sens large et inclut autant la cristallographie de surface que la morphologie à une échelle micrométrique et submicrométrique. Le but de cet article est de présenter les principaux effets structuraux que l’on rencontre à la surface des matériaux solides. Le lecteur se reportera pour les notions de cristallographie de volume ou de surface aux articles spécialisés de ce traité. De même, les techniques expérimentales utilisées dans les études structurales de surface seront mentionnées ici par l’usage que l’on peut en faire et leur intérêt ; le lecteur trouvera le principe de ces techniques dans les articles qui leur sont consacrés dans le traité Analyse et Caractérisation.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-a1365


Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

3. Morphologie de la surface d’un solide

Les moyens d’obtenir une surface solide sont divers, allant de la fracture, du clivage ou de l’érosion, jusqu’à la formation par un processus de croissance cristalline, autour d’un germe ou par dépôt sur un substrat. Suivant les conditions thermodynamiques (température, pression, flux...), la surface formée peut apparaître dans un état d’équilibre stable ou métastable, ou dans un état hors d’équilibre.

3.1 Faces d’équilibre d’un cristal

Un système physique est dit en équilibre thermodynamique lorsque le potentiel chimique est uniforme en tout point de ce système. Localement, les atomes participent à des fluctuations dont les temps caractéristiques d’évolution sont tels que seule se dégage une configuration moyenne qui correspond à un état d’équilibre entre les processus antagonistes de condensation-évaporation, adsorption-désorption au niveau des échanges entre une surface solide et sa pression de vapeur. La morphologie ou forme macroscopique d’équilibre de la surface d’un matériau solide peut être dans une première approche générale prédite par la thermodynamique qui requiert que l’énergie libre de surface soit minimale. Celle-ci intègre un terme dit d’excès d’énergie de surface ou tension de surface γ qui correspond au travail de formation d’une surface unitaire à volume, température et potentiel chimique constants. Si la tension de surface γ est isotrope, c’est-à-dire indépendante de l’orientation cristallographique de la surface solide, l’état d’énergie libre est donné par une surface sphérique, surface d’aire minimale. En fait, γ varie suivant l’orientation cristallographique de la surface, et passe par des minimums locaux singuliers à l’origine des surfaces d’équilibre présentant des facettes d’orientation cristalline bien définie. Une étude de la morphologie d’équilibre d’une surface solide requiert donc une connaissance détaillée de la tension de surface γ , et notamment de sa dépendance orientationnelle γ .

La figure 1a montre le principe du diagramme de Wulff, ou γ ‐graphe. C’est un diagramme polaire...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Morphologie de la surface d’un solide
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   Reports on progress in Physics.  -  Vol. 57, 10 Institute of Physics Publishing (1994).

  • (2) -   Surface science.  -  Vol. 299/300, Elsevier Science, North Holland (1994).

  • (3) -   Le journal du CNRS.  -  Numéro 65 (1995).

  • (4) -   Clefs,  -  revue trimestrielle du Commissariat à l’Énergie Atomique, numéro 23 (1992).

  • (5) - MONCH (W.) -   Semiconductor surfaces and interfaces.  -  Springer Series in Surface Sciences-Springer (1995).

  • (6) -   Structure and dynamics of surfaces II.  -  Éd. W. Schommers et P. von Blanckenhagen, Topics in current physics. Springer-Verlag (1987).

DANS NOS BASES DOCUMENTAIRES

  • Cristallographie géométrique.,

  • Radiocristallographie.

  • Microscopie à sonde locale.

  • Microscopie électronique à balayage.

  • Microscopie électronique en transmission.

  • Spectroscopie des électrons Auger.

  • ...

ANNEXES

    Livres et revues

    Surface segregation, related phenomena. - Éd. P. A. Dowben et A. Miller, CRC Press (1990).

    Surfaces et interfaces of solids. - Éd. H. Lüth, Springer-Verlag (1993).

    Les perspectives ouvertes en nanotechnologie par manipulation atomique sont décrites par

    BALL (P.) - GARWIN (L.) - * - Nature 355, p. 761 (1992).

    ZEPPENFELD (P.) - EIGLER (D.) - * - La Recherche 241, p. 360 (1992).

    GREY (F.) - * - Advanced Materials, 5, p. 704 (1993).

    HAUT DE PAGE

    Cet article est réservé aux abonnés.
    Il vous reste 92% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Physique Chimie

    (201 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS