Présentation
En anglaisRÉSUMÉ
La physique des surfaces et des interfaces tient une grande place dans le développement de matériaux nouveaux. Les phénomènes macroscopiques et les propriétés spécifiques à la surface, comme la tension superficielle, les forces d'adhésion, la réactivité chimique, découlent de la structure électronique des solides. Les grands progrès technologiques en matière de microscopies et de photoémission permettent de nos jours d’observer l’atome seul et d’appréhender finement la nature des états et des transports électroniques. Ces approches sont d’autant plus vraies dans le cas des surfaces bidimensionnelles ordonnées et périodiques des métaux et des semi-conducteurs. De plus, la puissance actuelle des processeurs permet de simuler avec pertinence le comportement quantique des électrons au sein de la matière et en surface.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The physics of surfaces and interfaces plays a great role in the development of new materials. The macroscopic phenomena and the properties specific to surfaces such as superficial tensions, adhesion forces and chemical reactivity derive from the electronic structure of solids. Massive technological improvements in terms of microscopy and of photoemissions currently enable the observation of single atoms and refine our knowledge of electronic states and transportation. This is notably true regarding the two-dimensional periodically structured surfaces of metals and semiconductors. Furthermore, the current power of processors enables the accurate simulation of the quantic behaviour of electrons within the matter and on surfaces.
Auteur(s)
-
Jean-Marc THEMLIN : Docteur en sciences physiques - Professeur à Aix-Marseille Université - Chercheur à l'IM2NP – Institut Matériaux Microélectronique Nanosciences de Provence – UMR CNRS 6242
INTRODUCTION
La plupart des propriétés physico-chimiques des matériaux solides, qu'elles soient électriques, magnétiques, optiques, thermiques, mais aussi leur structure cristalline d'équilibre dérivent de leur structure électronique, qui décrit la répartition des niveaux d'énergie des électrons dans le solide. Les techniques modernes de calcul des structures électroniques sont généralement basées sur des solides monocristallins infinis dans les trois dimensions, alors que tout solide réel est nécessairement délimité par une surface. Or, à la surface d'un solide, l'environnement d'un atome n'est pas le même que dans le volume, ne serait-ce que parce que les atomes à la lisière du solide (c'est-à-dire les atomes de la première couche atomique, à l'interface solide-vide ou solide-atmosphère) n'ont pas le même nombre de premiers voisins que dans le volume. Lors de la création de la surface, une partie des liaisons chimiques des atomes surfaciques doivent être brisées, ce qui coûte une certaine énergie (la tension superficielle). La structure électronique au voisinage de la surface se démarque donc plus ou moins nettement des propriétés volumiques. Même une surface idéale terminant un volume tronqué (les atomes de la surface restant aux mêmes positions qu'ils soient ou non en lisière) peut posséder des états électroniques spécifiques (les états de surface) et manifester des effets multi-électroniques différents du volume. Ce changement de la structure électronique locale est à l'origine de phénomènes macroscopiques et de propriétés spécifiques à la surface, comme l'énergie de surface, les forces d'adhésion, la réactivité chimique...
Dans le premier opus de ce triple dossier consacré aux propriétés électroniques des surfaces des solides [AF 3 716], nous avons introduit les concepts généraux qui permettent de décrire la structure électronique des solides et de leurs surfaces, donné quelques éléments de la structure cristallographique des surfaces, et décrit la répartition macroscopique des charges dans la région péri-superficielle des métaux et des semi-conducteurs. Nous avons ensuite décrit les méthodes expérimentales qui permettent de sonder les propriétés électroniques des surfaces [AF 3 717]. Nous aborderons ici la nature des états électroniques des surfaces bidimensionnelles ordonnées et périodiques, en donnant quelques exemples concrets de surfaces typiques pour les métaux et les semi-conducteurs. Les deux dernières sections 2 et 3 sont dévolues au transport électronique bidimensionnel et au confinement des états électroniques.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Confinement quantique des états de surface
Des états d'énergies discrètes se forment à chaque fois que des électrons sont confinés dans l'espace par un puits de potentiel, comme dans les atomes et les molécules. Des états localisés apparaissent également dans des « puits quantiques » formés par des structures de taille nanométrique artificiellement créées, de dimensions et de tailles variables. Les progrès récents des techniques de nanofabrication (auto-assemblage, croissance sur surfaces nanostructurées, manipulation directe d'atomes et de molécules par STM ou AFM) permettent de créer sur une surface une grande variété de structures de basse dimensionnalité plus ou moins élaborées ayant au moins une dimension de taille nanométrique, films minces évidemment, mais également points et fils quantiques (0D et 1D), enclos quantiques (2D)...
3.1 Confinement dans des films minces : états de puits quantiques
Le confinement des fonctions d'ondes électroniques entre les deux surfaces d'un film ultra-mince, généralement métallique, donne lieu à des états localisés appelés états de puits quantique (QWS pour Quantum Well States ). De tels états, prévus théoriquement en 1983 , ne sont observés expérimentalement que depuis 1986 dans les films ultra-minces de métaux adsorbés sur des surfaces, entre autres par la photoémission . L'observation de ces états est liée à la haute qualité structurale des films ultra-minces, d'une épaisseur suffisamment uniforme au niveau atomique ; cette condition est généralement atteinte par l'évaporation de métaux sur un substrat maintenu à basse température, afin d'éviter la formation d'îlots liée à la mobilité en surface des atomes déposés. Les énergies et les temps de vie de ces états de puits...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Confinement quantique des états de surface
BIBLIOGRAPHIE
-
(1) - TAMM (I.) - * - Physik. Zeits. Sowjetunion, 1, p. 733 (1932).
-
(2) - SHOCKLEY (W.) - * - Phys. Rev., 56, p. 317 (1939).
-
(3) - HASEGAWA (S.), TONG (X.), TAKEDA (S.), SATO (N.), NAGAO (T.) - Structures and electronic transport on silicon surfaces. - Prog. Surf. Sci., 60, p. 89 (1999).
-
(4) - IBACH (H.A.) - Physics of surfaces and interfaces. - Springer, Berlin (2006).
-
(5) - BECHSTEDT (F.) - Principles of surface physics. - Springer-Verlag, Berlin Heidelberg (2003).
-
(6) - ECHENIQUE (P.M.), BERNDT (R.), CHULKOV (E.V.), FAUSTER (Th.), GOLDMANN (A.), HÖFER (U.) - Decay of electronic excitations at metal surfaces. - Surface Science Reports, 52 (2004).
-
...
DANS NOS BASES DOCUMENTAIRES
1.1 Revues spécialisées de physique des surfaces
Surface Science https://www.sciencedirect.com/journal/surface-science
Progress in Surface Science http://www.elsevier.com/wps/find/journaldescription.cws_home/411/description#description
Surface Science Reports http://www.elsevier.com/wps/find/journaldescription.cws_home/505678/description#description
Journal of Electron Spectroscopy and related phenomena http://www.elsevier.com/wps/find/journaldescription.cws_home/500848/description#description
Surface Structure Database du NIST http://www.nist.gov/srd/surface.htm
Conductivité de surface par micro 4 pointes http://www.capres.com
Formation de la surface Si(111) reconstruite (7x7) à partir d'un nanocristal de Si http://www.vimeo.com/1086112
HAUT DE PAGECet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive