Présentation

Article

1 - ÉTATS ÉLECTRONIQUES DE SURFACE

2 - TRANSPORT ÉLECTRONIQUE 2D : CONDUCTION DANS LES ÉTATS DE SURFACE DES SEMI-CONDUCTEURS

3 - CONFINEMENT QUANTIQUE DES ÉTATS DE SURFACE

4 - CONCLUSIONS

Article de référence | Réf : AF3718 v1

Conclusions
Propriétés électroniques des surfaces solides - États électroniques de surface des métaux et semi-conducteurs

Auteur(s) : Jean-Marc THEMLIN

Date de publication : 10 janv. 2012

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La physique des surfaces et des interfaces tient une grande place dans le développement de matériaux nouveaux. Les phénomènes macroscopiques et les propriétés spécifiques à la surface, comme la tension superficielle, les forces d'adhésion, la réactivité chimique, découlent de la structure électronique des solides. Les grands progrès technologiques en matière de microscopies et de photoémission permettent de nos jours d’observer l’atome seul et d’appréhender finement la nature des états et des transports électroniques. Ces approches sont d’autant plus vraies dans le cas des surfaces bidimensionnelles ordonnées et périodiques des métaux et des semi-conducteurs. De plus, la puissance actuelle des processeurs permet de simuler avec pertinence le comportement quantique des électrons au sein de la matière et en surface.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jean-Marc THEMLIN : Docteur en sciences physiques - Professeur à Aix-Marseille Université - Chercheur à l'IM2NP – Institut Matériaux Microélectronique Nanosciences de Provence – UMR CNRS 6242

INTRODUCTION

La plupart des propriétés physico-chimiques des matériaux solides, qu'elles soient électriques, magnétiques, optiques, thermiques, mais aussi leur structure cristalline d'équilibre dérivent de leur structure électronique, qui décrit la répartition des niveaux d'énergie des électrons dans le solide. Les techniques modernes de calcul des structures électroniques sont généralement basées sur des solides monocristallins infinis dans les trois dimensions, alors que tout solide réel est nécessairement délimité par une surface. Or, à la surface d'un solide, l'environnement d'un atome n'est pas le même que dans le volume, ne serait-ce que parce que les atomes à la lisière du solide (c'est-à-dire les atomes de la première couche atomique, à l'interface solide-vide ou solide-atmosphère) n'ont pas le même nombre de premiers voisins que dans le volume. Lors de la création de la surface, une partie des liaisons chimiques des atomes surfaciques doivent être brisées, ce qui coûte une certaine énergie (la tension superficielle). La structure électronique au voisinage de la surface se démarque donc plus ou moins nettement des propriétés volumiques. Même une surface idéale terminant un volume tronqué (les atomes de la surface restant aux mêmes positions qu'ils soient ou non en lisière) peut posséder des états électroniques spécifiques (les états de surface) et manifester des effets multi-électroniques différents du volume. Ce changement de la structure électronique locale est à l'origine de phénomènes macroscopiques et de propriétés spécifiques à la surface, comme l'énergie de surface, les forces d'adhésion, la réactivité chimique…

Dans le premier opus de ce triple dossier consacré aux propriétés électroniques des surfaces des solides [AF 3 716], nous avons introduit les concepts généraux qui permettent de décrire la structure électronique des solides et de leurs surfaces, donné quelques éléments de la structure cristallographique des surfaces, et décrit la répartition macroscopique des charges dans la région péri-superficielle des métaux et des semi-conducteurs. Nous avons ensuite décrit les méthodes expérimentales qui permettent de sonder les propriétés électroniques des surfaces [AF 3 717]. Nous aborderons ici la nature des états électroniques des surfaces bidimensionnelles ordonnées et périodiques, en donnant quelques exemples concrets de surfaces typiques pour les métaux et les semi-conducteurs. Les deux dernières sections 2 et 3 sont dévolues au transport électronique bidimensionnel et au confinement des états électroniques.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af3718


Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Conclusions

Au cours de ces dernières décennies, la physique des surfaces et des interfaces est devenue une sous-discipline de plus en plus importante du domaine de la matière condensée, à la croisée des chemins entre la physique, la cristallographie, la chimie, la biologie, et les sciences des matériaux. Poussés par les besoins de matériaux nouveaux et par la réduction de la taille des dispositifs électroniques et optoélectroniques, la diversité des développements récents dans le domaine permettent de mieux appréhender toute la richesse des propriétés électroniques des surfaces des matériaux solides.

Au niveau expérimental, la découverte et la « démocratisation » du microscope à effet tunnel et des microscopies associées permettent d'observer et même de manipuler des atomes individuels sur les surfaces. La résolution des techniques basées sur la photoémission permet l'étude de phénomènes à une échelle de plus en plus fine et d'accéder aux propriétés intrinsèques de l'état fondamental des assemblages d'atomes en surface. Du point de vue de la simulation, des techniques de calcul ab initio des structures électroniques, basées sur la théorie de la fonctionnelle de densité, s'appliquent maintenant à des systèmes de plus en plus grands et peuvent utiliser des processeurs de plus en plus puissants pour simuler le comportement quantique des électrons dans la matière et aux surfaces. Les techniques plus élaborées qui permettent de calculer les propriétés des systèmes excités (quasi-particules), bien que nettement plus compliquées à mettre en œuvre, se développent également rapidement.

Le couplage des techniques d'analyse avec les technologies de nanofabrication devrait rapidement étendre encore le vaste champ des matériaux fonctionnels à des nanostructures de plus en plus élaborées. Au plus les physiciens s'approcheront de la compréhension fine des fascinantes propriétés des surfaces solides, au plus les outils et les concepts introduits brièvement dans ce triple dossier deviendront familiers à une large communauté de scientifiques et d'ingénieurs.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusions
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - TAMM (I.) -   *  -  Physik. Zeits. Sowjetunion, 1, p. 733 (1932).

  • (2) - SHOCKLEY (W.) -   *  -  Phys. Rev., 56, p. 317 (1939).

  • (3) - HASEGAWA (S.), TONG (X.), TAKEDA (S.), SATO (N.), NAGAO (T.) -   Structures and electronic transport on silicon surfaces.  -  Prog. Surf. Sci., 60, p. 89 (1999).

  • (4) - IBACH (H.A.) -   Physics of surfaces and interfaces.  -  Springer, Berlin (2006).

  • (5) - BECHSTEDT (F.) -   Principles of surface physics.  -  Springer-Verlag, Berlin Heidelberg (2003).

  • (6) - ECHENIQUE (P.M.), BERNDT (R.), CHULKOV (E.V.), FAUSTER (Th.), GOLDMANN (A.), HÖFER (U.) -   Decay of electronic excitations at metal surfaces.  -  Surface Science Reports, 52 (2004).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS