Présentation

Article

1 - EXCITATIONS ET QUASI-PARTICULES

2 - SPECTROSCOPIES DE PHOTOÉLECTRONS

3 - PHOTOÉMISSION INVERSE

4 - SONDES À CHAMP PROCHE

5 - CONCLUSIONS

Article de référence | Réf : AF3717 v1

Sondes à champ proche
Propriétés électroniques des surfaces solides - Techniques expérimentales

Auteur(s) : Jean-Marc THEMLIN

Date de publication : 10 juil. 2011

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Depuis un demi-siècle, la science des surfaces a accompli des progrès remarquables dans la caractérisation et la connaissance de l’arrangement des atomes à la surface d’un solide de structure cristalline. À l’heure actuelle, les techniques de spectroscopie et d’imagerie permettant de sonder les propriétés électroniques des surfaces sont nombreuses. Pour autant, aucune d’entre elles ne peut donner un accès direct et univoque à l'ensemble de la structure atomique détaillée des couches périsuperficielles. La solution est donc la combinaison des informations fournies par plusieurs techniques, comme l'analyse dynamique des taches de diffraction LEED, la diffusion d'un faisceau atomique, la diffraction des photoélectrons, la diffraction des rayons X en incidence rasante, les images STM ou AFM. Ces approches croisées livrent au moins partiellement les caractéristiques structurales essentielles des surfaces des principaux solides.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

For over half a century, the science of surfaces has achieved significant advances in the characterization and knowledge of atom combination at the surface of solids with a crystalline structure. There is currently a wide range of spectroscopy and imagery techniques allowing for the probing of surface electronic properties. However, none of them is able to provide direct and univocal access to the whole detailed atomic structure of perisuperficial layers. The solution therefore consists in combining information obtained from several techniques such as the dynamic analysis of diffraction spots (LEED patterns), atomic beam diffusion, photoelectron diffraction, grazing incidence X-ray diffraction, STM or AFM images. Such combined approaches provide, at least in part, the essential structural characteristics of the main solids’ surfaces.

Auteur(s)

  • Jean-Marc THEMLIN : Docteur en sciences physiques - Professeur à Aix-Marseille Université - Chercheur à l'IM2NP – Institut matériaux microélectronique nanosciences de Provence

INTRODUCTION

Depuis le début de la révolution industrielle, les surfaces des matériaux ont été d'un grand intérêt pratique, étant le siège de phénomènes importants comme la corrosion, la catalyse hétérogène, l'émission thermo-ionique des filaments des ampoules et des tubes à vide électroniques... En appliquant la théorie cinétique des gaz, on peut en effet montrer que tous les sites réactifs d'une surface propre à l'instant t0 sont visités par un atome ou une molécule de l'atmosphère ambiante en environ une seule microseconde. Les meilleurs vides accessibles étant longtemps restés de l'ordre du millibar, les surfaces étudiées étaient, à température ambiante, le plus souvent couvertes et masquées par des couches adsorbées d'atomes et de molécules de nature inconnue. En l'absence de techniques de production de vides très poussés, des surfaces atomiquement propres ne pouvaient donc se former qu'à très haute température dans les cas favorables où les adsorbats s'évaporaient. C'est ainsi que dès 1927, quelques années après que de Broglie ait formulé l'hypothèse que les particules de la matière possédaient un caractère ondulatoire, Davisson et Germer, travaillant aux laboratoires de la Bell Telephone, purent démontrer l'existence de figures de diffraction lors de la rétrodiffusion d'électrons de faible énergie par la surface d'un film de nickel. Pour cette confirmation expérimentale de la dualité onde-corpuscule, Davison reçut le prix Nobel de physique en 1937 avec Thomson, pour la découverte des « ondes électroniques ». Depuis les années 1970, des vides très poussés de l'ordre de 0,1 picobar (domaine de l'ultra-haut-vide ou UHV) sont produits de manière routinière en laboratoire, ce qui rend possible la préparation de surfaces très bien caractérisées au niveau atomique, qu'elles soient propres ou délibérément recouvertes d'un adsorbat avec une précision d'une fraction de monocouche .

Avec l'avènement des microscopies à champ proche inventées par Binnig et Rohrer dans les années 1980, les physiciens ont acquis la capacité de visualiser dans l'espace direct la topographie et la structure atomique des surfaces avec une précision inférieure à l'angström. À cet outil remarquable s'ajoute toute une gamme de techniques de caractérisation des surfaces, des sondes moins locales mais tout aussi puissantes donnant accès à la composition atomique et chimique et à la structure cristalline, dont les plus connues sont la spectroscopie des électrons Auger (AES), la diffraction d'électrons lents ou rapides (LEED, RHEED), la spectroscopie des photoélectrons (UPS, XPS, XPD)... Ainsi, les dernières décades du vingtième siècle ont été les témoins d'un essor sans précédent de la science des surfaces et des interfaces entre deux phases volumiques, également stimulée par les progrès dans les techniques du vide, et matérialisés entre autres par la réalisation à l'échelle industrielle d'hétérostructures de matériaux semi-conducteurs (diodes lasers à hétérojonction, transistors MOS...) ou magnétiques (têtes de lectures GMR de disques durs) synthétisées avec une précision nanométrique.

L'arrangement des atomes à la surface d'un solide de structure cristalline connue n'est généralement pas prévisible a priori. En effet, à cause des changements de la liaison chimique des atomes à la surface, des phénomènes de relaxation et de reconstruction sont généralement présents, ce qui implique que les atomes périsuperficiels sont déplacés de leur position idéale par rapport à une simple troncature du volume. Pour un cristal volumique, la diffraction des rayons X permet la détermination des structures cristallographiques de systèmes ordonnés aussi complexes que des cristaux de macromolécules comme des protéines. Malheureusement, la diffusion des rayons X avec des longueurs d'onde de l'ordre de l'angström par la matière n'est pas assez forte pour obtenir une sensibilité suffisante à la surface des solides. Il n'y a donc pas une technique expérimentale simple et évidente qui donne un accès direct et univoque à l'ensemble de la structure atomique détaillée des couches périsuperficielles, et il est généralement nécessaire de combiner les informations fournies par plusieurs techniques liées à la diffraction d'un rayonnement ou de particules par la couche périsuperficielle. Ainsi, l'analyse dynamique des taches de diffraction LEED, la diffusion d'un faisceau atomique, la diffraction des photoélectrons, la diffraction des rayons X en incidence rasante, les images STM ou AFM... donnent des informations croisées qui permettent, dans la plupart des cas, de préciser au moins partiellement les caractéristiques structurales essentielles des surfaces des principaux solides. Ces informations permettent d'accélérer la convergence des méthodes de calcul de structure électronique. En effet, le fait de disposer d'une information structurale, même approchée, facilite la comparaison entre la structure électronique simulée et des résultats expérimentaux comme des spectres de photoémission ou des images STM, qui contiennent une information sur la densité locale des états électroniques. En minimisant les forces sur les atomes, des méthodes hybrides combinant les simulations DFT et la dynamique moléculaire  permettent de déterminer quel est l'état fondamental du système, soit la configuration d'équilibre de plus faible énergie totale. Les résultats expérimentaux portant sur la structure de surface permettent d'accélérer le temps de calcul en limitant les structures d'essai à des points de départ suffisamment réalistes. Signalons également que pour reproduire finement et expliquer en détail les résultats expérimentaux, et en particulier la dispersion des états inoccupés, les simulations devraient également tenir compte des effets multiélectroniques qui, selon les cas, influencent plus ou moins fortement les prédictions théoriques.

Après cette brève introduction, nous allons donner ici un aperçu des principales méthodes expérimentales qui permettent de sonder les propriétés électroniques des surfaces. Cet article fait suite à [AF 3 716] qui introduit les concepts généraux permettant de décrire la structure électronique des solides et de leurs surfaces, et qui donne quelques éléments de la structure cristallographique des surfaces et de la répartition macroscopique des charges dans la région périsuperficielle des métaux et des semi-conducteurs. Un troisième article [AF 3 718] (à paraître) sera consacré à une description des propriétés électroniques de quelques surfaces représentatives de l'état de l'art.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af3717


Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

4. Sondes à champ proche

Les microscopes à champ proche (scanning probe microscopes), développés depuis les années 1980, ont en commun l'utilisation d'une pointe extrêmement fine amenée à proximité d'une surface, dont la position est balayée le long de celle-ci pour obtenir une cartographie bidimensionnelle d'une propriété spécifique reliée à l'interaction pointe surface (figure 9, ). Cette propriété peut être un courant tunnel entre une pointe polarisée électriquement et une surface conductrice (cas du STM), ou bien une force entre la pointe et la surface (cas de l'AFM). Ces techniques permettent, depuis peu, d'obtenir dans l'espace direct des images des phénomènes en jeu aux échelles atomiques, sur des échelles de temps de l'ordre de quelques minutes par image.

4.1 Microscope à effet tunnel (STM)

Le microscope à effet tunnel (STM pour Scanning Tunneling Microscope) fut inventé dans les années 1980 dans le laboratoire d'IBM à Zurich. Ses inventeurs, Binnig et Rohrer , reçurent le prix Nobel de physique en 1986 (avec Ruska). Le STM exploite le passage par effet tunnel quantique des électrons à travers une barrière (le vide) entre deux conducteurs très proches soumis à une différence de potentiel électrique. Dans ce microscope, une pointe métallique extrêmement fine est positionnée à une distance d (de l'ordre de quelques angströms) de la surface d'un échantillon suffisamment conducteur (figure 10). Suite au recouvrement des fonctions d'ondes électroniques de la pointe et de la surface, l'application d'une tension de polarisation Vsample-tip entraîne le passage d'un courant tunnel mesurable. Selon le signe de Vsample-tip , le courant électronique peut aller de la pointe vers la surface (Vsample-tip > 0), ou de la surface vers la pointe (Vsample-tip < 0)....

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Sondes à champ proche
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - O'HANLON (J.F.) -   An user's guide to vacuum technology.  -  Wiley (1989).

  • (2) - CAR (R.), PARRINELLO (M.) -   *  -  Phys. Rev. Lett., 55, p. 2471 (1985).

  • (3) - INKSON (J.C.) -   Many-body theory of solids : an introduction.  -  Plenum Press, New York (1984).

  • (4) - THEMLIN (J.-M.) -   Effets multi-électroniques en photoémission inverse résolue angulairement.  -  Thèse d'habilitation, Université de la Méditerranée, unpublished (2000).

  • (5) - COHEN (M.L.), LOUIE (S.G.) (Volume Editors) -   Conceptual foundations of materials : a standard model for ground- and excited state properties.  -  BURSTEIN (E.), COHEN (M.L.), MILLS (D.L.) et STILES (P.J.) (series eds.), Contemporary Concepts of Condensed Matter Physics. Elsevier, Amsterdam (2006).

  • (6) - LOUIE (S.G.) -   Quasiparticle theory of surface electronic excitation...

1 Sites Internet

Formation de la surface Si(111) reconstruite (7x7) à partir d'un nanocristal de Si : http://www.vimeo.com/1086112

Surface Science Tutorials in « UK Surface analysis forum » : http://www.uksaf.org/tutorials.html

STM image galleries

IAP TU Wien : http://www.iap.tuwien.ac.at/www/surface/stm_gallery/index

IBM : http://www.almaden.ibm.com/vis/stm/gallery.html

XPS

Surface Science Western laboratories. University of Western Ontario : http://www.xpsfitting.blogspot.com/

NIST Photoelectron Spectroscopy Database (free version) : http://srdata.nist.gov/xps/

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS