Présentation
En anglaisAuteur(s)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Il a fallu attendre la fin du XIXe siècle pour que triomphe la lampe à incandescence puis la seconde moitié du XXe siècle pour voir s’ébaucher la nouvelle révolution de l’éclairage : celle des diodes électroluminescentes. Les boîtes quantiques seront-elles la solution du XXIe siècle ?
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Comment fabriquer des boîtes quantiques ?
Quelle que soit la technique de croissance, la réalisation d’une hétérostructure semiconductrice suppose implicitement que l’on va déposer un matériau A sur un matériau B, de propriétés électroniques et de paramètre de maille différents. La différence de paramètre de maille implique l’accumulation dans le matériau déposé d’une énergie élastique directement proportionnelle à l’épaisseur de la couche. Cette quantité d’énergie élastique emmagasinée ne peut croître indéfiniment et la figure 3 illustre les deux cas de figure le plus généralement observés dans le cas d’hétérostructures semiconductrices : au-delà d’une certaine épaisseur critique, hc, le matériau doit relaxer son énergie élastique. Il peut le faire soit par formation de dislocations (relaxation plastique pour formation de misfit dislocation MD) soit par formation d’îlots cohérents dont la surface libre permet la déformation élastique (relaxation élastique).
Ce dernier cas est connu sous le nom de mode de croissance Stransky-Krastanow (SK). Il permet la formation de nanostructures auto-organisées de semiconducteurs. Celles-ci peuvent être recouvertes par le matériau barrière sur lequel elles ont été déposées. L’opération peut alors être répétée pour réaliser des super-réseaux de boîtes quantiques. Le mode de croissance SK est largement utilisé pour la fabrication de boîtes quantiques de semiconducteurs III-V de la famille des arseniures (InAs) et de boîtes quantiques de Si-Ge. C’est ce mode de croissance que nous utilisons pour la croissance de boîtes quantiques de GaN et d’InGaN dopées avec des ions de terres rares.
La figure 4, qui représente l’image obtenue par filtrage de Fourier d’un cliché de microscopie électronique d’une boîte de GaN, illustre une propriété remarquable des boîtes quantiques : l’interface GaN/AlN n’est pas distinguable sur l’image filtrée, ce qui indique la parfaite cohérence des réseaux cristallins du GaN et de l’AlN. La boîte est donc en contrainte compressive dans la matrice d’AlN. Par ailleurs, et bien que les nombreuses dislocations coin (threading edge dislocations) présentes dans l’AlN jouent le rôle de centres de nucléation préférentiels...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Comment fabriquer des boîtes quantiques ?
BIBLIOGRAPHIE
-
(1) - NAKAMURA (S.), SENOH (M.), MUKAI (T.) - * - Japn. J. Appl. Phys. 32, L8 (1993).
-
(2) - NARUKAWA (Y.), KAWAKAMI (Y.), FUNATO (M.), FUJITA (Shizuo), FUJITA (Shigeo), NAKAMURA (S.) - * - Appl. Phys. Lett. 70, 981 (1997).
-
(3) - DAUDIN (B.), WIDMANN (F.), FEUILLET (G.), SAMSON (Y.), ARLERY (M.), ROUVIÈRE (J.-L.) - * - Phys. Rev. B 56, [R 7 069] (1997).
-
(4) - ARLERY (M.), ROUVIÈRE (J.-L.), WIDMANN (F.), DAUDIN (B.), FEUILLET (G.), MARIETTE (H.) - * - Appl. Phys. Lett. 74, 3287 (1999).
-
(5) - ROUVIÈRE (J.-L.), SIMON (J.), PELEKANOS (N.), DAUDIN (B.), FEUILLET (G.) - * - Appl. Phys. Lett. 75, 2632 (1999).
-
(6) - SIMON (J.), PELEKANOS (N.T.), ADELMANN (C.), MARTINEZ-GUERRERO (E.), ANDRE (R.), DAUDIN (B.), LE SI DANG (B.), MARIETTE (H.) - * - Phys. Rev. B 68, 35312 (2003).
- ...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive