Présentation
EnglishAuteur(s)
-
Robert BOTET : Chargé de recherche au CNRS, UMR 8502 - Laboratoire de physique des solides d’Orsay
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Dans un livre célèbre, B. Mandelbrot introduisait, en 1975, les fractales dans notre vision du monde. La diffusion de ce concept a suivi des trajets aussi étranges que les objets eux-mêmes. Parti d'une notion mathématique, ce concept s'est répandu lentement dans les diverses branches des Sciences. Non qu'on ne reconnût pas bientôt ces objets en Physique ou en Biologie, mais une connotation métaphysique a rendu cette idée suspecte aux yeux de nombreux scientifiques. C'est une histoire qui s'est pourtant déjà déroulée dans d'autres circonstances, et pour d'autres objets. Il y a maintenant si longtemps que nous l'avons presque oubliée : les sceptiques grecs niaient l'utilité de la Géométrie euclidienne, car cette science était basée, selon eux, sur des concepts abstraits et inimaginables. « La ligne droite est inconcevable » écrivait Sextus Empiricus, et il argumentait cette assertion par l'impossibilité de représenter – et même, de se représenter mentalement – un tel objet infini et d'épaisseur nulle. Pour les fractales, nous sommes confrontés à des vertiges similaires. On y trouve une nouvelle sorte d'infini, qui fut rapidement récupéré par notre inconscient collectif ; je ne parlerai même pas de l'introduction des fractales dans l'art, qui a permis une focalisation supplémentaire du grand public sur cette notion. On commence à deviner ici quel effort doit faire le scientifique pour s'affranchir d'un tel poids métaphysique et rester à un niveau pragmatique. Et l'on excusera ceux qui ont été tentés de dire un jour avec un certain dédain : « les gens voient maintenant des fractales partout ! ». Même si ce genre de réflexion a freiné la diffusion d'une idée qui se révèle pourtant chaque jour plus féconde.
Alors, doit-on voir des fractales partout ou doit-on nier leur existence réelle ? Heureusement, il existe une « voie du milieu »: les fractales réelles existent dans un certain domaine de longueurs. En deçà de ces limites, nous voyons un objet fractal et les propriétés physiques reflètent fidèlement la fractalité de la structure. Au-delà, l'objet redevient commun. C'est cette approche, résolument orientée Physique, que nous allons voir dans cet article, sur des exemples réels, et le lecteur sera donc exempté de cet exercice mental éprouvant : essayer d'imaginer ces objets qui, comme la ligne droite, doivent en principe être matériels et structurés, bien que de volume exactement nul…
Le parti pris volontaire de cet article est donc limité aux objets fractals volumiques étudiés en Physique. On y parlera volontiers d'agrégats, qu'il faut entendre dans le sens général d'objets fabriqués à partir d'entités microsco-piques (les particules). Cela signifie que, pour des raisons d'homogénéité d'écriture, sera exclue de cette étude la description des surfaces et des lignes fractales, bien qu'elles aient, bien sûr, en principe droit de cité en Physique. Il faut bien se rendre compte qu'il existe des livres entiers dédiés à la simple géométrie des fractales et que, pour rentrer un peu dans les détails, nous sommes obligés de restreindre ici le nombre d'exemples. Même si l'on ne parle pas de lignes fractales, les idées fondamentales, et les outils d'étude, restent globalement similaires pour ces objets.
La notion de fractalité est, à la base, géométrique. Nous nous contenterons ici d'une telle description de la morphologie de ces objets, les propriétés physiques de ces fractales sortant du cadre d'un article aussi court. Nous suivrons ainsi ce qu'a été plus ou moins l'approche historique des fractales en Physique. Pendant longtemps, on n'a reconnu en effet ces objets que par leurs structures particulières. Il faut dire que, très souvent, on les connaissait depuis longtemps, mais, par manque d'approche théorique permettant de les caractériser quantitativement, ils étaient relégués au rang d'objets sans intérêt. Tel a été le rôle discret des poussières, fumées et autres boues, autant de matériaux qui ne commencent que maintenant à acquérir leur statut d'objets intéressants. Faciles à visualiser, ils furent des candidats de choix pour tester les hypothèses fractales de leur morphologie, et ils n'ont pas déçu.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Mouvement brownien
3.1 Présentation et généralités
-
Le mouvement brownien a une longue histoire depuis son étude systématique par R. Brown dans les années 1830. Ce botaniste remarqua au microscope que de minuscules spores de plante en suspension dans l'eau se déplaçaient sans arrêt selon des mouvements apparemment désordonnés et sans but. La première hypothèse de l'origine biologique de ces mouvements fut écartée très vite lorsqu'il s'aperçut que ce même genre d'agitation se manifestait pour des petites particules minérales. Restait l'explication que ce mouvement était dû à l'eau elle-même. Effectivement, changer la composition du liquide, mais aussi sa température, permet de faire varier les propriétés de ce mouvement.
-
Il fallut attendre trois quarts de siècle pour qu'une explication raisonnable apparaisse. Ce fut un résultat de travaux d'A. Einstein et, indépendamment, de M. Von Smoluchowski, en 1905, sur l'hypothèse atomique. A cette époque, l'hypothèse de la nature granulaire de la matière était bien répandue et la théorie déjà bien avancée, mais il manquait les preuves expérimentales. Einstein et Smoluchowski ont alors supposé que l'eau était constituée d'une nuée de minuscules molécules en mouvements incessants. Comme les chocs de ces molécules, sur de petites particules en suspension, sont aléatoires du point de vue de leur force, leur nombre et leur direction, les particules de Brown doivent effectivement avoir ce mouvement rapide et erratique visible au microscope. Mais, plus important, on peut déduire quantitativement l' équivalent de la vitesse des particules ; plus précisément, il s'agit du carré de la distance r 2 parcourue en moyenne par une particule pendant un intervalle de temps t donné :
où le coefficient de proportionnalité dépend explicitement de la constante de Boltzmann, de la température, de la viscosité de l'eau et de la taille des particules.
-
J. Perrin en 1909 fit des expériences pour vérifier la formule [7]. Pour cela, il notait sur une grille les positions successives d'une même particule...
Cet article fait partie de l’offre
Physique Chimie
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Mouvement brownien
BIBLIOGRAPHIE
-
(1) - MANDELBROT (B.) - Les objets fractals, forme, hasard et dimension. - 1975, Flammarion, Paris.
-
(2) - MANDELBROT (B.) - The Fractal Geometry of Nature. - 1982, Freemann.
-
(3) - VICSEK (T.) - Fractal Models for Diffusion-Controlled Aggregation. - J. Phys. A, 16 : L647-L650, 1983.
-
(4) - FOURNIER D’ALBE (E.) - Two New Worlds, I - The Infra-World, II - The Supra-World. - 1907, Longmans Green, London.
-
(5) - JONES (H.) - Fractals before Mandelbrot - A Selective History. - Fractals and Chaos, 1 / 7-34, 1991.
-
(6) - BÉLAIR (J.), DUBUC (S.) - Fractal Geometry and Analysis. - 1991, Kluwer Academic.
-
(7)...
Cet article fait partie de l’offre
Physique Chimie
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive