Présentation
En anglaisAuteur(s)
-
Jean-Pierre PRENEL : Professeur à l’Université de Franche-Comté
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
En quelques années, le laser (Light Amplification by Stimulated Emission of Radiation) est passé du statut d’appareil de laboratoire pour physicien à celui de système industriel très répandu.
L’objectif de cet article est donc de permettre aux très nombreux utilisateurs non spécialistes de comprendre le fonctionnement de cette source de lumière très particulière et de se familiariser avec ses différentes configurations pratiques.
La démarche proposée consiste à présenter en première partie les phénomènes physiques variés contribuant à l’émission de lumière cohérente, ainsi que les propriétés spécifiques de cette lumière. L’article suivant présente les principaux appareils présents sur le marché, en respectant le traditionnel classement en deux familles : lasers à solides et lasers à gaz. Avant la lecture de ce texte, il peut être profitable de consulter quelques articles du thème « optique » du traité de Sciences fondamentales, notamment « optique ondulatoire », « optique des milieux matériels » et « optique cohérente ».
Les applications, très nombreuses, ne sont pas traitées dans cet article. Le lecteur intéressé par un domaine d’application spécifique pourra trouver les informations adaptées dans les traités spécialisés : mécanique (traitement des matériaux, usinage), électricité (optronique, communications)...
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Sources laser > Physique du laser - Historique et principes de base > Amplification optique
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Amplification optique
Le pompage et l’inversion de population étant maîtrisés, l’émission stimulée définitivement admise afin de respecter les lois fondamentales de la Physique, l’analyse d’une population d’atomes excités conduit à un constat intéressant, schématisé sur la figure 5 : si n photons incidents (ici n = 5) éclairent une population d’atomes en état d’inversion, certains vont provoquer des émissions stimulées par interaction avec des atomes excités (3 sur la figure). Certains ne connaîtront pas d’interaction (1 dans la configuration choisie ici). En moyenne, le nombre de photons présents peut augmenter puisque le nombre d’atomes excités N 2 est au départ supérieur à N 1, nombre d’atomes à l’équilibre : dans ce cas, il y a amplification optique.
A. Einstein a poussé le raisonnement plus loin en envisageant des photons incidents unidirectionnels : avec les hypothèses de l’émission stimulée 2.2, les photons émis sous l’effet de ces photons incidents vont conserver la même direction et les mêmes phases. Par contre, ceux qui sont libérés par émission spontanée présenteront des directions aléatoires et se répartiront dans tout l’espace. Dans la direction spécifique des photons incidents (figure 6), la lumière d’origine stimulée sera donc largement prépondérante. La lumière émergente sera donc le résultat de la « balance » entre absorption et émission stimulée suivant cet axe. La variation d’énergie entre l’amont et l’aval peut donc se calculer à partir de l’évolution des populations N 1 et N 2 (équations [1] et ...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Amplification optique
BIBLIOGRAPHIE
-
(1) - EINSTEIN (A.) - Zur Quanten Theorie der Strahlung. - Phys. Zeit., 18, p. 121-128, 1917.
-
(2) - BITTER (F.) - * - Phys. Rev., 76, 833, 1949.
-
(3) - KASTLER (A.) - * - J. Phys. Rad., 11, 255, 1950.
-
(4) - GORDON (J.P.), ZEIGER (H.J.), TOWNES (C.H.) - * - Phys. rev., 95, 282, 1954.
-
(5) - SCHAWLOW (A.L.), TOWNES (C.H.) - Infrared and optical masers. - Phys. Rev., 112, 1940-1949, 1958.
-
(6) - MAIMAN (T.H.) - Stimulated optical radiation in ruby. - Nature, 187, 493-494, 1960.
-
(7) - JAVAN (A.), BENNETT (W.R.), HERRIOT (D.R.) - Population inversion and continuous optical...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive