Présentation
En anglaisAuteur(s)
-
Paul SMIGIELSKI : Docteur ès sciences - Ingénieur de l’École supérieure d’optique (ESO) - Attaché à la Direction Scientifique de l’Institut franco-allemand de Recherches de Saint-Louis - Cofondateur d’HOLO3 - Professeur conventionné à l’École nationale supérieure de physique de Strasbourg (ENSPS) - Université Louis-Pasteur de Strasbourg
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Plusieurs laboratoires furent à l’origine en 1965 de l’interférométrie holographique et du véritable départ de l’holographie dans l’industrie. Les chercheurs constatèrent qu’un déplacement trop important de l’objet (ou de tout autre élément du montage), pendant l’enregistrement de l’hologramme, entraînaît l’apparition de franges d’interférence sombres et claires parasites sur l’image restituée, pouvant altérer complètement celle-ci. Pour obtenir un hologramme de bonne qualité, il fallait donc éliminer ces franges parasites, en assurant une stabilité suffisante de l’objet et des différents éléments du montage pendant le temps d’exposition. Mais, d’un autre côté, ces franges d’interférences parasites pouvaient être exploitées et donner de précieux renseignements quantitatifs sur les déplacements qui leur avaient donné naissance. Un défaut majeur pour un hologramme image devenait très intéressant pour les applications industrielles.
Tout ce qui se déforme dans la nature est « a priori » susceptible d’être analysé par interférométrie holographique : de la déformation d’un tympan sous l’effet d’un bang d’avion supersonique à la déformation des éléments d’un moteur en fonctionnement, en passant par la croissance d’un cristal ou par les variations de densité de l’air autour d’un profil d’aile d’avion.
Dans cet article, nous allons traiter aussi bien les aspects physiques que théoriques de l’interféromètrie holographique, en donnant ensuite un aperçu sur les applications.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Fondamentaux de l'optique > Interférométrie holographique - Principes > Interférométrie holographique par double exposition
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Interférométrie holographique par double exposition
2.1 Aspects physiques
La technique employée est semblable à celle utilisée pour réaliser un hologramme conventionnel (simple exposition). Supposons que l’on ait réalisé le montage d’holographie représenté sur la figure 1 a. On effectue une première exposition, la pression à l’intérieur du propulseur étant p1 (état 1). On porte ensuite la pression interne de la valeur p1 à la valeur p2, sans toucher à rien d’autre. On effectue alors une seconde pose permettant d’enregistrer le propulseur dans l’état 2 (pression p2).
Après développement photographique, on dispose d’une plaque contenant la somme de deux hologrammes, incohérents entre eux puisque réalisés à des instants différents.
Cependant, à la restitution (figure 1 b ), on obtient deux images cohérentes entre elles, puisque restituées à l’aide d’une même source de lumière cohérente (laser à gaz à émission continue ici). Ces images interfèrent donc. Les franges d’interférence observées (figure 1 c ) caractérisent la modification subie par l’objet (le propulseur) entre les deux poses, c’est-à-dire la déformation due à la différence de pression p2 − p1 : ce sont les lignes d’isoamplitude de déplacement.
Quand on passe d’une frange à l’autre, le déplacement varie d’environ 0,3 µm ( λ/2 avec λ = 0,69 µm pour le laser à rubis).
D’une façon plus générale, la méthode permet de détecter et de mesurer les variations de phase survenues entre les deux expositions. Ces variations de phase peuvent être dues à des variations de longueur, d’indice de réfraction ou de longueur d’onde causées par des contraintes diverses (thermiques, pneumatiques, mécaniques...).
L’expression mathématique générale de l’intensité I dans le phénomène d’interférence est explicitée dans le paragraphe 2.2.
On a :
I = I0 [1...Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Interférométrie holographique par double exposition
BIBLIOGRAPHIE
-
(1) - HORMANN (M.H.) - An application of wavefront reconstruction to interferometry. - Appl. Opt., 4, p. 333-336 (1965).
-
(2) - BROOKS (R.E.), HEFLINGER (L.O.), WUERKER (R.F.) - Interferometry with a holographically reconstructed comparison beam. - Appl. Phys. Lett., 7, p. 248-249 (1965).
-
(3) - POWELL (R.L.), STETSON (K.A.) - Interferometric analysis by wavefront reconstruction. - J. Opt. Soc. Am., 55, p. 1593-1598 (1965).
-
(4) - SURGET (J.) - Two reference beam holographic interferometry for aerodynamic flow studies. - Nouvelle Revue d’Optique, vol. 5, n 4 (1974).
-
(5) - DÄNDLIKER (R.), THALMANN (R.) - Heterodyne and quasi-heterodyne holographic interferometry. - Opt. Eng., 24, p. 824-831 (1985).
-
(6) - OSTROVSKY (Y.I.), SHCHEPINOV (V.P.) , YAKOVLEV (V.V.) - Holographic interferometry in experimental mechanics. - ...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive