Présentation
En anglaisRÉSUMÉ
Cet article présente la physique de base des cristaux inorganiques à propriétés optiques non linéaires et de l’optique non linéaire. A partir des susceptibilités électriques non linéaires d’ordre 2 et 3 des solides nous décrivons les mécanismes de génération du second harmonique, de l’effet Pockels, de l’effet Faraday, du mélange de fréquences, de l’amplification paramétrique optique, de l’oscillation paramétrique optique ou encore de l’émission Raman stimulée.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article presents the fundamental physics of both nonlinear inorganic crystals and nonlinear optics. From second and third nonlinear optical susceptibilities we analyze the following mechanisms of second harmonic generation (SHG), Pockels effect, Faraday effect, frequency mixing, optical parametric amplification (OPA), optical parametric oscillation (OPO), and Raman stimulated emission.
Auteur(s)
-
Georges BOULON : Professeur des universités Institut Lumière Matière, Unité mixte de recherche CNRS 5306 Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France -
INTRODUCTION
Les cristaux à propriétés optiques non linéaires jouent un rôle essentiel dans le développement récent des nouvelles sources laser. Les principales connaissances de base nécessaires à la compréhension de leur fonctionnement ont été introduites à partir des susceptibilités électriques non linéaires d’ordre 2 et 3 des solides. On rappelle d’abord la loi de Malus et les notions essentielles de polarisation par réflexion à l’incidence de Brewster, par biréfringence avec les cristaux uniaxes (calcite CaCO3 , LiNbO3 , quartz), les interfaces de prismes de Glan-Thomson, ou de Glan-Foucault, par absorption avec les milieux dichroïques. L'ensemble est illustré par des exemples pratiques de systèmes utilisant les lames quart d’onde, des cellules anti-retour par application d’un champ électrique qui crée la biréfringence souhaitée de cristaux de KDP (KH2PO4) par effet Pockels et des cristaux isolateurs optiques par application d’un champ magnétique (effet Faraday). Parmi les applications les plus utilisées nous montrerons comment on peut obtenir la génération du second harmonique au moyen de cristaux uniaxes du type χ(2), le doublage de fréquence intracavité et l’autodoublage de fréquence donné par des cristaux dopés surtout par l’ion Nd3+. Nous poursuivons avec la génération de fréquences par des processus paramétriques non linéaires comme l’oscillateur paramétrique optique (OPO pour Optical Parametric Oscillator) souvent constitué d’un cristal de niobate de lithium LiNbO3 polarisé périodiquement (PPLN : Periodically Poled Lithium Niobate) basé sur un quasi-accord de phase (QPM : Quasi Phase-Matching) ainsi que l’amplification paramétrique optique (OPA). Nous terminerons par les cristaux laser décaleurs de fréquence à effet Raman stimulé appliqués à la création d’une étoile artificielle pompant les atomes de sodium de la mésosphère.
Cet article sur les cristaux et l’optique non linéaires est associé à un ensemble relatif à la présentation générale des sources laser à l’état solide qui inclut également la physique du laser Sources lasers à l’état solide. Fondements [AF 3 275] la luminescence cristalline Luminescence cristalline appliquée aux sources lasers [AF 3 276] et la génération des impulsions laser ultrabrèves Génération d’impulsions lasers ultracourtes jusqu’à la femtoseconde [AF 3 282].
MOTS-CLÉS
effet Pockels émission Raman stimulée oscillation paramétrique optique effet Faraday mélange de fréquences
KEYWORDS
Pockels's effect | Raman stimulated emission | optical parametric oscillation | Faraday's effect | frequency mixing
VERSIONS
- Version archivée 1 de janv. 2006 par Georges BOULON
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Matériaux pour l'optique et les lasers > Cristaux et optique laser non linéaires > Génération de fréquences
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Sources laser > Cristaux et optique laser non linéaires > Génération de fréquences
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Génération de fréquences
3.1 Génération du second harmonique par les cristaux uniaxes du type χ(2)
L’expression de la puissance de sortie P (2ω ) du faisceau de pulsations 2ω peut être calculée de la manière suivante à partir de l’expression du champ électrique E (2ω ) :
Il suffit de multiplier ensuite E (2ω) par son complexe conjugué E*(2ω ) pour obtenir P (2ω ) :
avec :
- ω :
- = 2πν et ν la fréquence de la lumière,
- c :
- célérité de la lumière,
- :
- longueur du cristal effectivement utilisé pour le doublage de fréquence,
- S :
- section droite du faisceau laser.
Il apparaît clairement que P (2ω ) admet un maximum si n (ω ) = n (2ω ).
Cette condition peut être obtenue avec certains cristaux biréfringents uniaxes (un seul axe optique selon lequel ce cristal est isotrope) comme LiNbO3 , LiTaO3 , KNbO3 , KTiOPO4 (KTP), BaTiO3 , Ba2NaNb5O15 (BNN), K3Li2–xNb5+xO15+2x . Sur la figure 5, on voit que la condition est satisfaite dans LiNbO3 pour le rayon ordinaire à la fréquence ω, ...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Génération de fréquences
BIBLIOGRAPHIE
-
(1) - BOYD (R.W.) - Nonlinear optics, handbook of laser technology and applications. Principles. - WEBB (C.) et JONES (J.) (éd.), Institute of Physics Publishing, Bristol Philadelphia, vol. I, p. 161-184 (2004).
-
(2) - PELLÉ (F.) - Laser based on nonlinear effects, handbook of laser technology and applications. Laser design and laser systems. - WEBB (C.) et JONES (J.) (éd.), Institute of Physics Publishing, Bristol Philadelphia, vol. II, p. 431-468 (2004).
-
(3) - YARIV (A.) - Optical waves in crystals. - Wiley, New York (1984).
-
(4) - COURTOIS (J.Y.) - Optique non linéaire. - Dans Les lasers et leurs applications scientifiques et médicales. FABRE (C.) et POCHOLLE (J.P.) (éd.), Les Éditions de Physique (1996).
-
(5) - POCHOLLE (J.P.), VIVIEN (D.) - Les matériaux laser pour l’optique non linéaire. - Numéro spécial de l’Actualité Chimique, Les matériaux du fondamental aux applications. Numéro publié en collaboration avec la SF2M et...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive