Présentation
EnglishRÉSUMÉ
Les efforts visant à améliorer les échangeurs thermiques dans de nombreux secteurs industriels (automobile, électronique...) nécessitent l'intensification des transferts de chaleur par convection. De nouvelles voies d'optimisation doivent donc être étudiées. L’utilisation des nanofluides en tant que fluide thermique est un nouveau domaine encore en phase de recherche. L’influence d'un certain nombre de paramètres, tels que la taille et la forme, les phénomènes aux interfaces entre liquide et particules, sont encore mal compris et caractérisés. Au final, le succès du développement d'un nanofluide industriel demande la résolution simultanée de plusieurs aspects, à commencer par l’amélioration du coefficient d’échange thermique.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Antoine GRÜSS
INTRODUCTION
Les efforts visant à améliorer les échangeurs thermiques dans de nombreux secteurs industriels (automobile, électronique…) nécessitent l'intensification des transferts de chaleur par convection [1] [2] [3] [4] [5]. Les améliorations dites « passives », au niveau des surfaces d'échange, sont une voie déjà largement explorée et atteignent leurs limites. De nouvelles voies d'optimisation doivent donc être étudiées. L'une d'elles consiste à utiliser de nouveaux fluides capables d'accroître les transferts thermiques : c'est le cas des nanofluides.
La définition des termes techniques, en gras dans le texte, est donnée dans un tableau en fin d'article.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanotechnologies pour l'énergie, l'environnement et la santé > Nanofluides pour les applications thermiques > Transferts de chaleur en monophasique
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Transferts de chaleur en monophasique
La littérature traite majoritairement de la problématique concernant l'augmentation de la conductivité thermique des nanofluides. Cette première étape est certes nécessaire et l'approche est somme toute cohérente dans le but d'intensifier les transferts de chaleur par l'emploi des nanofluides. Néanmoins, afin d'estimer véritablement les avantages des nanofluides dans des applications thermiques, le coefficient d'échange thermique (cas de la convection forcée) et la perte de pression doivent être considérés.
4.1 Transfert de chaleur par convection forcée
Ce type de transfert de chaleur est caractérisé par le coefficient d'échange thermique h du fluide en écoulement (exprimé en W · m–2 · K –1). Ce coefficient d'échange dépend du régime d'écoulement du fluide, représenté par le nombre de Reynolds Re.
La détermination expérimentale du coefficient d'échange thermique h nécessite l'usage d'une boucle fluidique au sein de laquelle une section, en général cylindrique de diamètre di , est instrumentée et chauffée par effet Joule (cas du flux imposé) [38]. Le calcul du coefficient d'échange thermique h est effectué grâce à la relation :
avec :
- Φ :
- (W) puissance thermique imposée à la section d'essais,
- Si :
- (m2) surface d'échange de la section d'essais,
- Tp :
- (K) température à la paroi,
- Tf :
- (K) température du fluide.
Les principaux résultats expérimentaux, issus de la littérature, sont regroupés dans le tableau 2...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Transferts de chaleur en monophasique
BIBLIOGRAPHIE
-
(1) - BONTEMPS (A.), GARRIGUE (A.), GOUBIER (C.), HUETZ (J.), MARVILLET (C.), MERCIER (P.), VIDIL (R.) - Intensification des échanges thermiques. - [BE 2 343] Techniques de l'Ingénieur.
-
(2) - PADET (J.) - Convection thermique et massique – Principes généraux. - [BE 8 205] Génie énergétique (2005).
-
(3) - PADET (J.) - Convection thermique et massique – Nombre de Nusselt : partie 1. - [BE 8 206] Génie énergétique (2005).
-
(4) - PADET (J.) - Convection thermique et massique – Nombre de Nusselt : partie 2. - [BE 8 207] Génie énergétique (2005).
-
(5) - LALLEMAND (A.) - Écoulement des fluides – Étude physique et cinématique. - [BE 8 151] Génie énergétique (1999).
-
(6) - LE...
ANNEXES
CHOI (S.) - Enhancing Thermal Conductivity of Fluids with Nanoparticles. - The American Society of Mechanical Engineers, New-York, vol. 231/MD-vol. 66:99-105, nov. 1995.
DAS (S.), CHOI (S.), YU (W.), PRADEEP (T.) - Nanofluids : Science and Technology. - J. Wiley (2008).
YU (W.), FRANCE (D.), ROUTBORT (J.), CHOI (S.) - Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements. - Heat Transfer Engineering, vol. 29, p. 432-460 (2008).
TRISAKSRI (V.), WONGWISES (S.) - Critical Review of Heat Transfer Characteristics of Nanofluids. - Renewable and Sustainable Energy Reviews, vol. 11, p. 512-523 (2007).
KABELAC (S.), KUHNKE (J.) - Heat transfer mechanisms in nanofluids – Experiments and theory. - 13 th IHTC, Sydney, 13-18 août 2006.
YU (W.), FRANCE (D.), CHOI (S.), ROUTBORT (J.) - Review and Assessment of Nanofluid Technology for Transportation and Other Applications. - ANL/ESD/07-9 (2007).
OH (D.W.), KWON (O.), LEE (J.S.) - Transient Thermal Conductivity and Colloidal Stability Measurements of Nanofluids by Using the 3 omega Method. - Journal of Nanoscience and Nanotechnology, vol. 8, 10, p. 4923-4929 (2009).
Anonymous - International Nanofluid Properties Benchmark Exercise (INPBE). - (2008) http://mit.edu/nse/nanofluids/benchmark/index.html
WANG (B.), ZHOU (L.), PENG (X.), ZHANG (X.) - Enhancing the effective thermal conductivity of liquid with dilute suspensions of nanoparticles. - Fifteenth Symposium on Thermophysical properties, Boulder, CO, États-Unis, 22-27 juin 2003.
HWANG (Y.), AHN (Y.), SHIN (H.), LEE (C.), KIM (G.), PARK (H.), LEE (J.) - Investigation on Characteristics of Thermal Conductivity Enhancement of Nanofluids. - Current...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive