Article de référence | Réf : NM5115 v1

Propriétés thermophysiques des nanofluides
Nanofluides pour les applications thermiques

Auteur(s) : João-Paulo RIBEIRO, Jean-Antoine GRÜSS

Date de publication : 10 juil. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les efforts visant à améliorer les échangeurs thermiques dans de nombreux secteurs industriels (automobile, électronique...) nécessitent l'intensification des transferts de chaleur par convection. De nouvelles voies d'optimisation doivent donc être étudiées. L’utilisation des nanofluides en tant que fluide thermique est un nouveau domaine encore en phase de recherche. L’influence d'un certain nombre de paramètres, tels que la taille et la forme, les phénomènes aux interfaces entre liquide et particules, sont encore mal compris et caractérisés. Au final, le succès du développement d'un nanofluide industriel demande la résolution simultanée de plusieurs aspects, à commencer par l’amélioration du coefficient d’échange thermique.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

Les efforts visant à améliorer les échangeurs thermiques dans de nombreux secteurs industriels (automobile, électronique…) nécessitent l'intensification des transferts de chaleur par convection [1] [2] [3] [4] [5]. Les améliorations dites « passives », au niveau des surfaces d'échange, sont une voie déjà largement explorée et atteignent leurs limites. De nouvelles voies d'optimisation doivent donc être étudiées. L'une d'elles consiste à utiliser de nouveaux fluides capables d'accroître les transferts thermiques : c'est le cas des nanofluides.

La définition des termes techniques, en gras dans le texte, est donnée dans un tableau en fin d'article.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-nm5115


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

3. Propriétés thermophysiques des nanofluides

3.1 Conductivité thermique

De nombreuses études ont été menées afin de mesurer, mais aussi d'expliquer et de prédire, l'augmentation de la conductivité thermique des nanofluides. Différentes méthodes de mesure de conductivité thermique ont été employées, la plus courante reste la méthode utilisant un fil chaud en régime transitoire. Néanmoins, compte tenu de la dispersion des résultats, des biais expérimentaux ont été suspectés et d'autres méthodes de mesure ont été utilisées, comme la méthode 3ω [14], les méthodes stationnaires utilisant une différence de température entre deux plaques ou deux cylindres et les méthodes optiques basées sur la variation de l'indice de réfraction en fonction de la température [6].

Un benchmark international en cours, initié par le MIT [15], permettra sans doute de lever cette controverse.

Benchmark : point de référence

La figure 3 montre les résultats de mesures expérimentales effectuées sur des nanofluides à base d'eau [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]. Elle représente l'amélioration relative de la conductivité thermique du nanofluide k par rapport à celle du fluide de base k 0 , en fonction de la fraction volumique de nanoparticules.

Les résultats montrent une évolution croissante de la conductivité thermique des nanofluides avec la fraction volumique de nanoparticules. Cette augmentation est d'autant plus forte que le matériau constituant les nanoparticules est conducteur. En outre, des études ont montré que plus les nanoparticules sont petites et plus la conductivité thermique du mélange est améliorée [28] [29]. Néanmoins, pour une famille de nanofluides donnée, les résultats de la littérature présentent une dispersion assez forte. Cette dispersion peut être attribuée au mode de synthèse des nanofluides et/ou à la méthode de mesure.

Maxwell, en 1873, fut l'un des premiers à étudier analytiquement la conduction thermique au sein d'une suspension de particules très diluée. En résolvant l'équation de Laplace appliquée au champ des températures...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Propriétés thermophysiques des nanofluides
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BONTEMPS (A.), GARRIGUE (A.), GOUBIER (C.), HUETZ (J.), MARVILLET (C.), MERCIER (P.), VIDIL (R.) -   Intensification des échanges thermiques.  -  [BE 2 343] Techniques de l'Ingénieur.

  • (2) - PADET (J.) -   Convection thermique et massique – Principes généraux.  -  [BE 8 205] Génie énergétique (2005).

  • (3) - PADET (J.) -   Convection thermique et massique – Nombre de Nusselt : partie 1.  -  [BE 8 206] Génie énergétique (2005).

  • (4) - PADET (J.) -   Convection thermique et massique – Nombre de Nusselt : partie 2.  -  [BE 8 207] Génie énergétique (2005).

  • (5) - LALLEMAND (A.) -   Écoulement des fluides – Étude physique et cinématique.  -  [BE 8 151] Génie énergétique (1999).

  • (6) - LE...

1 Sources bibliographiques

CHOI (S.) - Enhancing Thermal Conductivity of Fluids with Nanoparticles. - The American Society of Mechanical Engineers, New-York, vol. 231/MD-vol. 66:99-105, nov. 1995.

DAS (S.), CHOI (S.), YU (W.), PRADEEP (T.) - Nanofluids : Science and Technology. - J. Wiley (2008).

YU (W.), FRANCE (D.), ROUTBORT (J.), CHOI (S.) - Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements. - Heat Transfer Engineering, vol. 29, p. 432-460 (2008).

TRISAKSRI (V.), WONGWISES (S.) - Critical Review of Heat Transfer Characteristics of Nanofluids. - Renewable and Sustainable Energy Reviews, vol. 11, p. 512-523 (2007).

KABELAC (S.), KUHNKE (J.) - Heat transfer mechanisms in nanofluids – Experiments and theory. - 13 th IHTC, Sydney, 13-18 août 2006.

YU (W.), FRANCE (D.), CHOI (S.), ROUTBORT (J.) - Review and Assessment of Nanofluid Technology for Transportation and Other Applications. - ANL/ESD/07-9 (2007).

OH (D.W.), KWON (O.), LEE (J.S.) - Transient Thermal Conductivity and Colloidal Stability Measurements of Nanofluids by Using the 3 omega Method. - Journal of Nanoscience and Nanotechnology, vol. 8, 10, p. 4923-4929 (2009).

Anonymous - International Nanofluid Properties Benchmark Exercise (INPBE). - (2008) http://mit.edu/nse/nanofluids/benchmark/index.html

WANG (B.), ZHOU (L.), PENG (X.), ZHANG (X.) - Enhancing the effective thermal conductivity of liquid with dilute suspensions of nanoparticles. - Fifteenth Symposium on Thermophysical properties, Boulder, CO, États-Unis, 22-27 juin 2003.

HWANG (Y.), AHN (Y.), SHIN (H.), LEE (C.), KIM (G.), PARK (H.), LEE (J.) - Investigation on Characteristics of Thermal Conductivity Enhancement of Nanofluids. - Current...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS