Présentation
RÉSUMÉ
L'ingénierie de dispersion dans les matériaux artificiels tels que les cristaux photoniques permet un contrôle sans précédent de la propagation de la lumière. Cette ingénierie globale des paramètres effectifs des matériaux a permis la mise en évidence de régimes d'ultra-réfraction (autocollimation, réfraction négative) et trouve désormais son prolongement par une ingénierie localisée dans le cadre de l'optique de transformation (et la recherche de l'invisibilité). Après une description des principes physiques, différentes réalisations technologiques pour la focalisation et l'invisibilité en infrarouge à base de cristaux photoniques sont présentées. Pour conclure, une étude de faisabilité pour la détection et l'imagerie est proposée.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
dispersion engineering in artificial materials, as photonic crystals, permits a unique control of light propagation. This bulk engineering of material parameters has allowed to study ultra-refraction phenomena (self collimation, negative refraction) and is extended now to localized engineering concepts in the framework of transformation optics (and the search for invisibility). Following a description of the physical effects involved, some photonic crystal based fabricated prototypes for infrared focusing and partial invisibility will be presented. To conclude, a feasibility study for infrared detection and imaging will be proposed.
Auteur(s)
-
Olivier VANBESIEN : Professeur des universités - Institut d’Électronique de Microélectronique et de Nanotechnologie (IEMN – UMR CNRS 8520) – Université Lille 1, avenue Poincaré CS60069, 59652 Villeneuve d’Ascq Cedex, France
INTRODUCTION
l’ingénierie de dispersion dans les matériaux artificiels tels que les cristaux photoniques permet un contrôle sans précédent de la propagation de la lumière. Cette ingénierie globale des paramètres effectifs des matériaux a permis la mise en évidence de régimes d’ultra-réfraction (autocollimation, réfraction négative) et trouve désormais son prolongement par une ingénierie localisée dans le cadre de l’optique de transformation (et la recherche de l’invisibilité). Après une description des principes physiques, différentes réalisations technologiques pour la focalisation et l’invisibilité en infrarouge à base de cristaux photoniques seront présentées. Pour conclure, une étude de faisabilité pour la détection et l’imagerie sera proposée.
MOTS-CLÉS
optique de transformation cristaux photoniques ultra-réfraction réfraction négative gradient d’indice
KEYWORDS
transformation optics | photonic crystals | ultra-refraction | negative refraction | gradient index
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanotechnologies pour l'électronique, l'optique et la photonique > Nanophotonique : ingénierie de dispersion pour la détection et l’imagerie infrarouge > Ingénierie de dispersion : principes
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Nano-optique > Nanophotonique : ingénierie de dispersion pour la détection et l’imagerie infrarouge > Ingénierie de dispersion : principes
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Ingénierie de dispersion : principes
2.1 Structures artificielles diélectriques
2.1.1 De l’ingénierie globale à l’ingénierie localisée
Manipuler de manière indépendante les grandeurs caractéristiques macroscopiques des matériaux (permittivité : ε - perméabilité : µ - indice de réfraction : n - impédance de surface : z) dans l’infrarouge reste une tâche délicate. L’abondante littérature sur les métamatériaux montre clairement que, des micro-ondes au térahertz, il est possible grâce à la structuration et aux éléments constitutifs utilisés d’adresser séparément ε et µ. En optique, dès lors que l’on abandonne les métaux souvent considérés comme trop dissipatifs, même si leur « dilution » dans une structure artificielle complexe aux petites dimensions peut les rendre de nouveau exploitables, le recours aux diélectriques (et donc les semi-conducteurs) ne permet plus en général qu’un travail sur ε (ou n). Même l’exploitation des résonances de Mie pour moduler la perméabilité effective devient quasiment impossible car elle nécessite l’exploitation de matériaux à valeurs initiales de permittivité très élevées que l’on ne trouve pas à l’état naturel pour le régime de longueur d’onde ici recherché. La solution la plus mature revient alors à utiliser les cristaux photoniques bidimensionnels (voir encadré 1), non seulement en régime de bande interdite pour créer de nouveaux guides de propagation (à modes lents notamment) par insertion de défauts étendus ou pour créer des cavités à coefficients de qualité très élevés pour le piégeage et l’émission de lumière, mais aussi pour leur richesse en régimes de fonctionnement potentiels en bandes permises. De plus amples détails sur l’ensemble des aspects relatifs à l’exploitation des grandeurs caractéristiques des matériaux pourra être trouvée dans la référence ...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Ingénierie de dispersion : principes
BIBLIOGRAPHIE
-
(1) - YABLONOVITCH (E.), GMITTER (T.J.), LEUNG (K.M.) - Photonic band structures ; The face-centered cubic case employing non spherical atoms - Phys Rev Lett, Vol. 67 n° 17, pp. 2295-98 (1991).
-
(2) - JOHN (S) - Strong localization of photons in certain disordered dielectric superlattices - Phys Rev Lett., Vol. 58 n° 23, pp. 2486-89 (1987).
-
(3) - JOANNOPOULOS (J.D.), MEADE (R.D.), WINN (J.N.) - Photonic crystal : molding the flow of light - Princeton, NJ, Princeton University Press (1995).
-
(4) - VESELAGO (V.G.) - The electrodynamics of substances with simultaneously negative of ε and µ - Sov Phys-Usp, Vol. 10, pp. 509-14 (1968).
-
(5) - PENDRY (J.B.) - Negative refraction makes a perfect lens - Phys Rev Lett, Vol. 85 n° 8, pp. 3966-69 (2000).
-
(6) - VANBESIEN (O.) - * - ....
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive