Présentation

Article

1 - INTRODUCTION

2 - LES NIVEAUX DE MODÉLISATION DU TRANSPORT ÉLECTRONIQUE

3 - BREF APERÇU SUR LA SIMULATION DU TRANSPORT QUANTIQUE

4 - APPLICATIONS

5 - CONCLUSION

Article de référence | Réf : NM400 v1

Introduction
Simulation du transport quantique

Auteur(s) : François TRIOZON, Stephan ROCHE

Date de publication : 10 janv. 2010

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Cet article dresse un panorama de la modélisation théorique et de la simulation des phénomènes de transport quantique en nanosciences. Cette approche est conduite à travers quelques concepts clés de la mécanique quantique qui régissent le comportement des électrons dans les systèmes de basse dimensionnalité et d'où émergent les caractéristiques des dispositifs ultimes de la microélectronique. Après des notions générales sur la structure électronique des matériaux, sont présentés les différents niveaux de modélisation du transport électronique et leur domaine de validité. La théorie du transport quantique est abordée de manière intuitive grâce à la notion de propagation des paquets d'ondes, puis implémentée dans la simulation des nanotransistors. Cette contribution vise à donner un éclairage sur les progrès de la simulation quantique, qui permettent maintenant des études réellement comparatives avec les expériences et orientent les choix technologiques pour le développement d'une nanoélectronique.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Avec la réduction de taille des transistors et l'apparition de nouveaux nanomatériaux susceptibles d'être utilisés comme dispositifs électroniques, les effets quantiques deviennent prépondérants dans les propriétés de conduction électrique. La simulation de ces effets nécessite une approche multi-échelle combinant une description précise de la structure électronique des matériaux avec une modélisation quantique des processus de transport. Il s'agit d'un enjeu majeur pour la compréhension et l'utilisation des nanomatériaux.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-nm400


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Introduction

Stephan ROCHE Ingénieur de recherche CEA-DSM-INAC – Grenoble.

François TRIOZON Ingénieur de recherche CEA-LETI-MINATEC – Grenoble.

Ces dernières années ont été jalonnées par des résultats expérimentaux marquants concernant certaines briques de bases, fondamentales pour les nanosciences. Des nano-objets tels que les nanotubes de carbone ou les nanofils semi-conducteurs ont continué à apporter de nombreuses surprises, tandis qu'un nouveau matériau, le graphène, a pu être synthétisé. L'exploration des nanosciences est rendue possible par des techniques de caractérisation fines telles que les microscopies en champs proches (STM : Scanning Tunneling Microscopy, AFM : Atomic Force Microscopy,…). Toutefois l'analyse des reconstructions atomiques de surface, des nanostructures organiques ou inorganiques déposées, et des auto-assemblages supra-moléculaires ne peut se faire convenablement sans un outil de simulation à même de révéler les propriétés électroniques sous-jacentes des systèmes et objets observés.

Comprendre et contrôler le transport électronique à travers un nano-objet unique représentent un des enjeux majeurs de l'électronique moléculaire. Les molécules et les nano-objets offrent d'abord la perspective de disposer de vrais dispositifs électroniques à l'échelle nanométrique à même de concurrencer à terme les circuits basés sur les matériaux semi-conducteurs (silicium). Les transistors à base de nanotubes de carbone en sont un des exemples les plus avancés. Mais les molécules constituent surtout une nouvelle classe de conducteurs quantiques qui, sous plusieurs aspects, s'apparentent aux boîtes quantiques notamment par la présence de niveaux d'énergie discrets dus au confinement électronique, par l'influence du blocage de Coulomb sur le transport et par l'importance des effets de spin comme l'effet Kondo. Alors que les structures semi-conductrices peuvent être contrôlées par le « design », les molécules uniques sont modifiables grâce à la richesse et la versatilité des réactions chimiques.

Dans la présente contribution, nous allons dans un premier temps rappeler un certain nombre de concepts fondamentaux des propriétés électroniques et du transport de charge. Nous aborderons les approches semi-classiques et quantiques du transport en mettant également l'accent sur les aspects théoriques et...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Introduction
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MESSIAH (A.) -   Mécanique quantique  -  Dunod (1995).

  • (2) - COHEN-TANOUDJI (C.) et al -   Mécanique quantique  -  Hermann (1997).

  • (3) - ASHCROFT (N.W.), MERMIN (N.D.) -   Solid State Physics  -  Brooks Cole (1976).

  • (4) - KITTEL (C.) -   Physique de l’état solide  -  Dunod (1983).

  • (5) - HOHENBERG (P.), KHON (W.), SHAM (L.J.) -   Inhomogeneous Electron Gas  -  Physical Review, vol. 136, pages B864-B871 (1964) ; Self-consistent Equations Including Exchange and Correlation Effets. Physical Review, vol. 140, pages A1133-A1138 (1965).

  • (6) - GONZE (X.) et al -   First-principles computation of material properties : the ABINIT software project  -  Computational Materials Science, vol. 25, pages 478-492 (2002).

  • ...

1 Outils logiciels

SIESTA : code ab initio DFT utilisant des bases d’orbitales atomiques localisées

http://www.icmab.es/siesta

TB_sim : code « liaisons fortes » développé au CEA Grenoble. Il calcule les propriétés structurales, électroniques, optiques et de transport de charge des nanostructures telles que les nanotubes de carbone, le graphène, les nanocristaux et nanofils semi-conducteurs

http://inac.cea.fr/L_Sim/TB_Sim/index.html

ABINIT : code ab initio DFT utilisant des bases d’ondes planes

http://www.abinit.org

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS