Présentation
EnglishRÉSUMÉ
Cet article se focalise sur les propriétés mécaniques des matériaux nanostructurés, dont les applications ne cessent de se développer. Les particularités structurales de ces matériaux à l’échelle nanométrique sont favorables à des valeurs élevées de limite d’élasticité ou de résistance à la rupture. À l’opposé, les résistances à la propagation des fissures de fatigue et au fluage n’augmentent pas avec la diminution de la taille de grain. Ainsi, quels procédés retenir pour élaborer des matériaux nanostructurés à fonction mécanique, dépôts progressifs d’atomes ou transformations de la structure macroscopique ? Des résultats expérimentaux ont permis de valider les prévisions de l’approche théorique.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Dominique FRANÇOIS : Professeur honoraire de l'École centrale de Paris
INTRODUCTION
Les nanomatériaux font l'objet de nombreuses recherches, sont en plein développement et trouvent des applications diverses. Leur importance a été notamment soulignée dans les articles [MA 4 026] « Nanomatériaux : structure et élaboration » et [MA 4 027] « Nanomatériaux : propriétés et applications » des Techniques de l'Ingénieur. Comme ce domaine évolue rapidement et qu'il recouvre une grande variété d'aspects, le présent article apporte des compléments concernant essentiellement les propriétés mécaniques des matériaux nanostructurés et certaines techniques d'élaboration.
En effet, le terme nanomatériau désigne aussi bien des matériaux divisés à l'extrême que des matériaux possédant des structures à l'échelle nanométrique. Les problématiques concernant ces divers types de nanomatériaux ne sont pas les mêmes. Selon les cas, elles sont d'ordre physique, chimique ou mécanique. Les traiter toutes aboutirait à un exposé disparate. Il semble donc préférable de se limiter à un aspect, ici celui des propriétés mécaniques, en vue précisément d'utiliser les nanomatériaux dans des structures de fonction mécanique. C'est pourquoi il va s'agir essentiellement de l'examen des matériaux nanostructurés, et encore pas de tous. Ils peuvent être classés en quatre catégories correspondant à leur dimensionnalité :
-
dimension 0 pour des matériaux contenant des amas nanométriques ;
-
dimension 1 pour ceux qui incorporent des nanotubes ou des fils nanostructurés et des multicouches d'épaisseurs nanométriques ;
-
dimension 2 pour des couches nanostructurées ;
-
dimension 3 pour des solides équiaxes nanostructurés. Gardant à l'esprit la fonction mécanique, les amas, les nanotubes interviendront comme renforts dans des matériaux qui possèdent en dehors de ceux-ci une microstructure classique. Il sera ici principalement question des fils et des solides équiaxes nanostructurés. Une classification supplémentaire intervient selon que les matériaux sont monophasés ou polyphasés .
Il existe déjà de copieux articles sur les propriétés mécaniques des matériaux nanostructurés. En particulier la présente synthèse doit beaucoup à celles de Meyers, Mishra et Benson et de Baró et co. . Par ailleurs Tjong a consacré un article très détaillé aux composites polymériques renforcés par des nanomatériaux . Une importante revue bibliographique est celle de Tjong et Haydn . Les références bibliographiques indiquées ne sont pas du tout exhaustives. Elles sont là seulement pour fournir des exemples caractéristiques.
Dans une première partie seront étudiées les raisons qui incitent à rechercher la diminution aussi forte que possible de la taille de la microstructure. Il est, en effet, bien connu que la limite d'élasticité, la résistance à l'amorçage des fissures de fatigue et la résistance à la rupture sont d'autant meilleures que la taille de grain est petite . Mais c'est le contraire lorsque sont considérées les résistances à la propagation des fissures de fatigue et au fluage. Selon nos connaissances sur les mécanismes en jeu, qu'est-il possible d'envisager à l'échelle nanométrique ?
Il faudra ensuite voir comment peuvent être obtenus des matériaux nanostructurés. Seront avant tout envisagés ceux de dimensions macroscopiques, éventuellement utilisables dans des structures à fonction mécanique.
La dernière partie, enfin, montrera les résultats expérimentaux qui ont pu être obtenus avec des matériaux nanostructurés. On verra donc si les prévisions issues des considérations développées dans la première partie peuvent être ou non vérifiées.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Étude et propriétés des métaux > Matériaux métalliques avancés > Propriétés mécaniques des matériaux nanostructurés > Propriétés obtenues
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanomatériaux : propriétés > Propriétés mécaniques des matériaux nanostructurés > Propriétés obtenues
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Surfaces et structures fonctionnelles > Propriétés mécaniques des matériaux nanostructurés > Propriétés obtenues
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Propriétés obtenues
3.1 Limite d’élasticité
Comme prévu, la loi de Hall-Petch n’est plus suivie en dessous d’une taille de grains critique de l’ordre de 25 nm. Toutefois, les résultats ne permettent pas de trancher entre une diminution de la limite d’élasticité et sa constance lorsque la taille de grains diminue en deçà (figure 2, ). Il est possible que la présence de porosités perturbe certains résultats. L’intervention du fluage de Coble pourrait expliquer une diminution de la limite d’élasticité avec la taille de grains en dessous d’une taille de grains critique.
Sur du cuivre de 20 nm de taille de grains a été mesurée une limite d’élasticité en compression de 850 MPa, soit 0,85 % du module d’Young (figure 3).
Dans , Robertson, Erb et Palumbo ont obtenu, sur des dépôts électrolytiques de nickel, une limite d’élasticité de 690 MPa pour une taille de grains de 100 nm et de plus de 900 MPa pour une taille de grains de 10 nm (pour une taille de grains courante de 10 microns, la limite d’élasticité vaut environ 100 MPa).
L’acier tréfilé donne même de plus hautes performances : de façon courante 3 000 MPa, soit 1,5 % du module d’élasticité ...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Propriétés obtenues
BIBLIOGRAPHIE
-
(1) - SIEGEL (R.W.) - * - . – Mechanical Properties and Deformation Behavior of Materials having Ultrafine Microstructures, in Nastasi M., Parkin D.M. and Gleiter H., p. 509 (1993).
-
(2) - MEYERS (M.A.), MISHRA (A.), BENSON (D.J.) - Mechanical Properties of Nanocrystalline Materials - Progress in Mater. Science, 51, pp. 427-556 (2006).
-
(3) - BARO (M.D.), KOLOBOV (Yu.R.), OVID’KO (I.A.), SCHAEFER (H.-E.), STRAUMAL (B.B.), VALIEV (R.Z.), ALEXANDROV (I.V.), IVANOV (M.), REIMAN (K.), REIZIS (A.B.), SURINASH (S.), ZHILYAEV (A.P.) - Diffusion and Related Phenomena in Bulk Nanostructured Materials - Rev. Adv. Mater. Sci., 2, pp. 1-43 (2001).
-
(4) - TJONG (S.C.) - Structural and Mechanical Properties of Polymer Nanocomposites - Mater. Sci. and Eng. : R : Reports, 53, pp. 73-197 (2006).
-
(5) - TJONG (S.C.), HAYDN (C.) - Nanocrystalline Materials and Coatings - Mater. Science and Techno., R45, pp. 1-88 (2004).
-
...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive