Article de référence | Réf : AF1380 v1

Contexte et exemples
Problèmes inverses

Auteur(s) : Michel KERN

Date de publication : 10 avr. 2010

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les problèmes inverses sont des situations grâce auxquelles on cherche à déterminer les causes d'un phénomène en fonction de l'observation de ses effets. La complexité de ce type de résolutions réside dans la difficulté à avoir une bonne connaissance du problème direct (principe consistant à déduire les effets d'un problème, les causes étant connues) ainsi que dans l'incertitude des paramètres du système. Certaines techniques, comme la régularisation des problèmes mal posés et la méthode des moindres carrés, ont été mises en place pour aider à la résolution de tels problèmes, qu'ils soient linéaires ou non.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Inverse problems are situation through which one tries to determine the causes of a phenomenon through observing its effects. The complexity of this type of resolutions lies in the difficulty to gain sound knowledge of the direct problem (a principle consisting in deducing the effects of a problem, its causes being known) as well as in the uncertainty of the parameters of the system. Certain techniques, such as regularizing ill-posed problems and the least squares method have been implemented in order to assist in solving such problems, be they linear or not.

Auteur(s)

  • Michel KERN : Chargé de recherche à l'INRIA, CRI Paris – Rocquencourt

INTRODUCTION

D’après Inverse problems de J. B. Keller, deux problèmes sont dits « inverses » l’un de l’autre si la formulation de l’un met l’autre en cause. Cette définition comporte une part d’arbitraire, et fait jouer un rôle symétrique aux deux problèmes considérés. Une définition plus opérationnelle est qu’un problème inverse consiste à déterminer des causes connaissant des effets. Ainsi, ce problème est l’inverse de celui appelé problème direct, consistant à déduire les effets, les causes étant connues.

Cette seconde définition montre que nous sommes plus habitués à étudier des problèmes « directs ». En effet, depuis Newton la notion de causalité est ancrée dans notre subconscient scientifique, et à un niveau plus prosaïque, nous avons appris à poser, puis à résoudre des problèmes pour lesquels les causes sont données, et l’on en cherche alors les effets. Cette définition montre aussi que les problèmes inverses risquent de poser des difficultés particulières. Nous verrons plus loin qu’il est possible de donner un contenu mathématique à la phrase « les mêmes causes produisent les mêmes effets », autrement dit, qu’il est raisonnable d’exiger que le problème direct soit « bien posé ». Par contre, il est facile d’imaginer, et nous en verrons de nombreux exemples, que les mêmes effets puissent provenir de causes différentes. Cette idée contient en germe la principale difficulté de l’étude des problèmes inverses : ils peuvent avoir plusieurs solutions, et il est nécessaire de disposer d’informations supplémentaires pour les discriminer.

La prédiction de l’état futur d’un système physique, connaissant son état actuel, est l’exemple type du problème direct. On peut envisager divers problèmes inverses : par exemple, reconstituer l’état passé du système connaissant son état actuel (si ce système est irréversible), ou la détermination de paramètres du système, connaissant (une partie de) son évolution. Ce dernier problème est celui de l’identification de paramètres, qui sera notre principale préoccupation dans la deuxième partie de l’article.

Une difficulté pratique de l’étude des problèmes inverses est qu’elle demande souvent une bonne connaissance du problème direct, ce qui se traduit par le recours à une grande variété de notions tant physiques que mathématiques. Le succès dans la résolution d’un problème inverse repose en général sur des éléments spécifiques à ce problème. Il existe toutefois quelques techniques qui possèdent un domaine d’applicabilité étendu, et cet article est une introduction aux principales d’entre elles : la régularisation des problèmes mal posés, et la méthode des moindres carrés, linéaires ou non linéaires.

La plus importante est la reformulation d’un problème inverse sous la forme de la minimisation d’une fonctionnelle d’erreur entre les mesures réelles et les « mesures synthétiques » (c’est-à-dire la solution du problème direct). Il sera commode de distinguer les problèmes linéaires des non linéaires. Précisons que la non-linéarité dont il s’agit ici fait référence au problème inverse lui-même, et non pas au problème direct (en considérant connus les paramètres).

Dans le cas des problèmes linéaires, le recours à l’algèbre linéaire et à l’analyse fonctionnelle permet d’obtenir des résultats précis, et des algorithmes efficaces. L’outil fondamental est ici la décomposition en valeurs singulières de l’opérateur considéré. Nous étudierons en détail la méthode de régularisation, qui consiste à « modifier » légèrement le problème étudié en un autre qui possède de « meilleures » propriétés. Ceci sera précisé au paragraphe 2.3.

Les problèmes non linéaires sont plus difficiles, et il existe moins de résultats généraux. Nous étudierons l’application des algorithmes d’optimisation aux problèmes obtenus par la reformulation évoquée plus haut. Un ingrédient technique essentiel (du point de vue numérique) est le calcul du gradient de la fonctionnelle à minimiser. Nous étudierons les méthodes de calcul de gradient au paragraphe 3.3. Nous verrons en particulier que la méthode de l’état adjoint permet ce calcul pour un coût qui est un (petit) multiple de celui de la résolution du problème direct.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af1380


Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

1. Contexte et exemples

  • Problèmes bien et mal posés

    Dans un livre célèbre, Hadamard  a introduit dès 1923 la notion de problème bien posé. Il s’agit d’un problème dont :

    • la solution existe ;

    • elle est unique ;

    • elle dépend continûment des données.

    Bien entendu, ces notions doivent être précisées par le choix des espaces (et des topologies) dans lesquels « vivent » les données et la solution.

    Dans ce même livre Hadamard laissait entendre (et c’était une opinion répandue jusqu’à récemment) que seul un problème bien posé pouvait modéliser correctement un phénomène physique. Après tout, ces trois conditions semblent très naturelles. En fait, nous verrons que les problèmes inverses ne vérifient souvent pas l’une ou l’autre de ces conditions, voire les trois ensembles. Après réflexion, cela n’est pas si surprenant :

    • un modèle physique étant fixé, les données expérimentales dont on dispose sont en général bruitées, et rien ne garantit que de telles données proviennent de ce modèle, même pour un autre jeu de paramètres ;

    • si une solution existe, il est parfaitement concevable (et nous le verrons sur des exemples) que des paramètres différents conduisent aux mêmes observations.

    Les trois conditions, dans la définition ci-dessus, n’ont pas toutes la même importance :

    • le fait que la solution d’un problème inverse puisse ne pas exister n’est pas une difficulté sérieuse. Il est habituellement possible de rétablir l’existence en relaxant la notion de solution (procédé classique en mathématique) ;

    • la non-unicité est un problème plus sérieux. Si un problème a plusieurs solutions, il faut un moyen de choisir entre elles. Pour cela, il faut disposer d’informations supplémentaires (une information a priori) ;

    • le manque de continuité...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Contexte et exemples
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ARNOLD (V. I.) -   Équations différentielles ordinaires  -  Éditions de Moscou (19xx).

  • (2) - AUBERT (G.), KORNPROBST (P.) -   Mathematical Problems in Image Processing : Partial Differential Equations and the Calculus of Variations (second edition)  -  Applied Mathematical Sciences, 147, Springer-Verlag (2006).

  • (3) - BANKS (H. T.), KUNISCH (K.) -   Estimation Techniques for Distributed Parameter Systems  -  Birkhäuser-Verlag, Zürich (1989).

  • (4) - BAUMEISTER (J.) -   Stable Solution of Inverse Problems  -  Vieweg, Braunschweig (1987).

  • (5) - BJORCK (A.) -   Numerical methods for least squares problems  -  Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1996).

  • (6) - BLEISTEIN (N.), COHEN (J. K.), STOCKWELL (J. J. W.) -   Mathematics of Multidimensional Seismic Imaging, Migration and Inversion  -  Interdisciplinary...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS