Présentation
EnglishRÉSUMÉ
Cet article propose trois types d’applications de distributions dans l’espace, celles que manipule essentiellement l’ingénieur. La formule de Stockes permet de démontrer la formule des sauts, autorisant à dériver une fonction qui présente une discontinuité le long d’une surface. Les espaces de Sobolev rendent possible l’écriture des équations aux dérivées partielles sous une formulation variationnelle. La dernière application présente l’utilisation des distributions en théorie du signal.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Michel DOISY : Maître de conférences en mathématiques - École nationale supérieure d’électrotechnique, d’électronique, d’informatique, d’hydraulique et des télécommunications (ENSEEIHT) - Institut national polytechnique de Toulouse
INTRODUCTION
Ce dossier fait suite aux deux exposés précédents sur le sujet et qui visaient à introduire les notions de base de la théorie des distributions. Il présente quelques applications fondamentales de cette théorie dans les domaines de l’Ingénieur.
On a vu, déjà, dans le dossier Convolution et transformée de Fourier comment l’écriture de l’opérateur de dérivation comme un produit de convolution, soit :
permet de ramener la résolution d’une équation différentielle à la recherche d’un inverse de l’opérateur de dérivation (solution de Green) dans une algèbre de convolution convenable. En quelque sorte, on algébrise le problème ! C’est très élégant et astucieux, sans résoudre toutes les difficultés.
Nous développons ici d’autres applications dans trois directions.
Nous espérons avoir donné au travers de ces trois exposés ( ainsi que le présent texte), les connaissances de base sur les distributions et une idée des applications possibles. La théorie des distributions est une belle mécanique, qui s’appuie sur des espaces fonctionnels complexes. Pour maîtriser l’outil, il faut avoir une idée de ses fondements : c’est là la difficulté d’écrire sur le sujet !
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Formulation variationnelle des problèmes aux limites elliptiques
Dans ce paragraphe, nous montrons comment les espaces de Sobolev introduits interviennent dans la résolution des équations aux dérivées partielles aux limites elliptiques. Nous nous contenterons d’illustrer ce propos par les deux problèmes classiques que sont le problème de Dirichlet et le problème de Neumann pour un ouvert borné régulier Ω de .
4.1 Problème de Dirichlet
Le problème de Dirichlet dans un disque D ouvert de est le suivant : trouver une fonction u de classe dans D, continue dans et telle que :
Dans , il peut être résolu par la théorie des fonctions holomorphes. Par contre, sa résolution pour un ouvert de est...?xml>?xml>
?xml>?xml>Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Formulation variationnelle des problèmes aux limites elliptiques