Présentation
En anglaisRÉSUMÉ
Cet article traite spécifiquement du produit de convolution des distributions et de leur transformée de Fourier. L’association de ces deux outils est parfaitement adaptée dans la résolution de certaines équations différentielles. L’importance du support d’une distribution est tout d’abord établie. Sont abordés ensuite le produit de convolution et ses propriétés. La notion de transformée de Fourier des distributions tempérées est longuement définie.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Michel DOISY : Maître de conférences en mathématiques École nationale supérieure d’électrotechnique, d’électronique, d’informatique, d’hydraulique et des télécommunications (ENSEEIHT) Institut national polytechnique de Toulouse
INTRODUCTION
Dans un premier article , nous avons présenté les principales opérations sur les distributions et abordé la notion fondamentale de dérivée d’une distribution.
Ce deuxième article traite plus particulièrement du produit de convolution des distributions et de leur transformée de Fourier.
Utilisés conjointement, le produit de convolution et la transformée de Fourier sont deux outils très efficaces pour résoudre certaines équations différentielles. Soit par exemple à résoudre :
Formellement, et en utilisant les propriétés du produit de convolution et de la transformée de Fourier , on peut écrire :
soit encore :
Comme la fonction n’a pas de zéro réel :
En utilisant les tables de transformées de Fourier, on a :
avec
Finalement :
et grâce à l’injectivité de la transformée de Fourier :
ou encore :
Bien entendu, dans ce calcul, plusieurs points restent à justifier ! Mais l’idée fondamentale est qu’en utilisant presque uniquement un calcul formel, on obtient la forme générale de la solution. On cherche à accroître l’efficacité de ce calcul symbolique en utilisant ces opérations au sens des distributions.
En s’appuyant sur le fait que l’opérateur de dérivation des distributions est un produit de convolution , on montrera l’importance de la recherche de solutions des équations différentielles, avec second membre la distribution δ (solution de Green).
Dans la définition du produit de convolution de deux distributions, la notion de support d’une distribution joue un rôle fondamental. Nous étudions en détail cette notion délicate dans le premier paragraphe. Nous montrons ensuite comment le produit de convolution permet la recherche de solutions des équations différentielles en utilisant — en grande partie — un calcul algébrique dans une algèbre de convolution convenable. Nous définissons enfin la notion de transformée de Fourier des distributions tempérées et nous étudions les propriétés conjointes du produit de convolution et transformée de Fourier des distributions, propriétés très voisines de celles qui existent pour les fonctions.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Support d’une distribution
Il s’agit là d’une notion importante, notamment pour la définition du produit de convolution des distributions.
Rappelons que si f est une fonction de dans , son support est le complémentaire du plus grand ouvert sur lequel elle s’annule. Ou encore :
où la barre désigne la fermeture de l’ensemble.
Le support d’une fonction est toujours un fermé.
On utilise la même idée pour définir le support d’une distribution.
Définition
Soit T dans et Ω un ouvert non vide de , on dit que T est nulle sur Ω si et seulement si, pour toute fonction ϕ de , on a à T, ϕ ñ = 0. Il est équivalent de dire que la restriction de T à est nulle.
Soit alors la famille {Ωi}i de tous les ouverts sur lesquels T s’annule et Ω = Èi Ωi. C’est un ouvert et l’on peut montrer (ce n’est pas évident !) que T s’annule sur Ω. C’est le plus grand ouvert sur lequel T s’annule.
Définition
Le complémentaire du plus grand ouvert sur lequel T s’annule est le support de la distribution T noté Supp (T).
Supp...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Support d’une distribution
BIBLIOGRAPHIE
-
(1) - GASQUET (C.), WITOMSKI (P.) - Analyse de Fourier et applications. Filtrage – Calcul Numérique – Ondelettes - . 354 p. – Masson – Paris (1990).
-
(2) - HERVÉ (M.) - Transformation de Fourier et distributions - . 182 p. – PUF – Paris (1986).
-
(3) - SAICHEV (A.I.), WOYCZYNSKI (W.A.) - Distributions in the physical and engineering sciences. Volume 1. Distributional and fractal calculus, integral transforms and wavelets - . 336 p. – Birkhäuser – Boston (1997).
-
(4) - SCHWARTZ (L.) - Méthodes mathématiques pour les sciences physiques. - 390 p. Herman-Paris (1965).
-
(5) - RODDIER (F.) - Distributions et transformation de Fourier - . 323 p. – Ediscience International – Paris (1978).
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive