Présentation
En anglaisAuteur(s)
-
Sylvie MÉLÉARD : Université Paris-10, MODALX - Laboratoire de probabilités et modèles aléatoires
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La théorie de l’intégration peut être abordée naturellement sous deux angles très différents. La première approche est une présentation fonctionnelle, qui définit tout d’abord les mesures comme éléments du dual des fonctions continues à support compact. Il s’agit ensuite de prolonger cette notion à la classe plus grande des fonctions intégrables. La deuxième approche, qui est celle que nous présenterons succinctement dans cet article, s’appuie directement sur la notion de mesure positive. C’est cette approche qui permet l’introduction naturelle des probabilités, comme mesures positives de masse 1.
Il est donc important de connaître les fondements de la théorie de la mesure, tribus, fonctions mesurables, mesures positives, pour comprendre ensuite le modèle probabiliste. On verra également que la mesure de Lebesgue n’est qu’un cas particulier de mesure positive. La théorie de l’intégration consiste principalement à construire l’intégrale de Lebesgue. Elle s’appuie sur quelques théorèmes fondamentaux (Beppo-Levi, Fatou, Lebesgue), la notion de mesure produit et le théorème de Fubini.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Intégrale
Soit un espace mesuré, la mesure m étant une mesure -finie.
3.1 Ensembles et fonctions négligeables, propriétés vraies presque partout
Définition. Une partie de E est dite m-négligeable ou négligeable pour la mesure m si elle est incluse dans une ensemble avec . Une fonction définie sur E est dite négligeable si elle est nulle en dehors d’un ensemble négligeable.
Définition. Une propriété sur les points de E est dite vraie m-presque partout (en abrégé m-p.p.) si elle est vraie pour tous les points de E excepté ceux d’un ensemble m-négligeable.
Une suite de fonctions réelles est dite converger m-p.p. vers une fonction f si le complémentaire de l’ensemble est m-négligeable.
3.2 Intégrale des fonctions mesurables positives
À chaque fonction f mesurable à valeurs dans
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Intégrale
BIBLIOGRAPHIE
-
(1) - BREZIS (H.) - Analyse fonctionnelle, théorie et applications. - Masson (1983).
-
(2) - MALLIAVIN (P.) - Intégration et probabilités, analyse de Fourier et analyse spectrale. - Masson (1982).
-
(3) - MARLE (C.H.) - Mesures et probabilités. - Hermann (1974).
-
(4) - BRIANE (M.), PAGÈS (G.) - Théorie de l’intégration. - Les grands cours Vuibert (1998).
-
(5) - RUDIN (W.) - Analyse réelle et complexe. - Masson 6e édition (1992).
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive