Présentation
En anglaisAuteur(s)
-
Gilbert DANA : Ancien élève de l’École normale supérieure - Ancien professeur à l’université Pierre-et-Marie-Curie (Paris VI)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les méthodes spectroscopiques sont des procédés d’étude physique mettant en jeu des phénomènes d’échange d’énergie entre la matière et un rayonnement électromagnétique. Il peut s’agir d’absorption ou d’émission de lumière, la « lumière » pouvant être dans la partie visible du spectre, ou en dehors. Ces échanges mettent en jeu des niveaux d’énergie bien définis de la matière et donc, sa quantification. Par absorption d’un photon ayant une énergie correspondant à l’écart entre deux niveaux d’énergie propres, la molécule est portée dans divers états excités. Le niveau propre d’énergie la plus basse s’appelle l’état fondamental.
En dehors d’un champ magnétique intense, il existe trois façons pour la molécule d’emmagasiner l’énergie absorbée : par valeurs décroissantes, énergie électronique , énergie vibrationnelle , énergie rotationnelle :
Les quanta d’énergie électronique sont les plus grands et se situent dans le domaine UV‐visible. Ils correspondent à la promotion d’un électron d’une orbitale occupée à l’état fondamental (orbitale liante ou non liante) à une orbitale antiliante. Ils ont donc un ordre de grandeur correspondant à l’énergie d’une liaison. Par conséquent, ils sont capables de rompre une telle liaison. Par exemple, le bichlore est coloré jaune‐verdâtre. Il présente une bande d’absorption dans le visible et ce n’est pas un hasard s’il se dissocie à la lumière en chlore atomique (initiation des réactions radicalaires). Dans le cas des liaisons multiples, la molécule peut garder sa cohésion mais peut subir une transformation structurale importante (réaction photochimique). La spectroscopie d’absorption UV, la plus utile en chimie, se limite à l’UV proche (de 200 à 400 nm) et au visible (de 400 à 800 nm). Elle concerne essentiellement, comme nous allons le voir, les systèmes insaturés et met en jeu des transitions électroniques réversibles, a priori sans changement de structure.
Dans le domaine des fréquences correspondant au spectre visible et au proche ultraviolet, l’énergie des photons est telle que l’on observe habituellement des transitions de types ® * ou ® * et plus rarement ® * (cas des thioéthers R — S — R ou des dérivés iodés R — I).
Les transitions ® *, ® * apparaissent en général dans l’UV lointain, au‐delà de 200 nm et sont difficiles à étudier pour diverses raisons (solvant opaque puisque l’on est dans le domaine d’absorption ® *, absorption intense de l’oxygène de l’air et donc nécessité d’une optique sous vide, éventuellement rupture de liaison avec dissociation et dégradation de l’échantillon, limite de transparence du quartz).
Les études menées en spectroscopie UV concernent donc essentiellement des molécules insaturées comportant des orbitales * de basse énergie.
En l’absence d’équilibre dépendant de la concentration, l’absorption de la lumière suit à chaque longueur d’onde λ la loi de Beer‐Lambert :
avec :
- lg (I0 / I )λ :
- densité optique
- I / I 0 (%) :
- transmittance.
Le spectre UV‐visible peut être tracé en fonction de la longueur d’onde λ ou de la fréquence ν. Si la concentration c est exprimée en mol/ l et la longueur traversée en cm, le coefficient de proportionnalité ε est appelé coefficient d’extinction molaire. Sa valeur dépend de la longueur d’onde.
En chimie organique, les spectres UV‐visible comportent généralement des bandes d’absorption larges de plusieurs milliers de cm– 1 (cette grande largeur est due au fait que la bande observée est l’enveloppe d’un réseau multiple de raies plus fines d’origine vibrationnelle). La valeur du coefficient d’extinction molaire ε varie en fonction de la fréquence ν et passe par un maximum à la fréquence . La fréquence est caractéristique de l’énergie de la transition (en gros, l’écart des niveaux entre lesquels l’électron activé subit la promotion, par exemple et *). La valeur de caractérise l’intensité de la bande. En fait, seule la surface de la bande a une signification physique simple. Cette surface est proportionnelle à la probabilité de transition.
Nous discuterons donc essentiellement de :
-
la position des raies ou l’énergie des transitions ;
-
l’intensité des raies ou la probabilité des transitions ;
-
la largeur des raies et l’existence d’une structure fine.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Environnement - Sécurité > Métier : responsable risque chimique > Introduction aux constantes physico-chimiques > Constantes des spectres ultraviolets > Application à la détermination des structures
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Application à la détermination des structures
4.1 Transitions observables dans le proche UV et le visible
Alors que la transition π ® π* de l’éthylène se situe vers 175 nm, le butadiène présente une transition dans l’UV proche (figure 7). En effet par suite de la conjugaison entre les doubles liaisons, la molécule possède quatre orbitales de caractère π (Ψ1 , Ψ2 , et ) et la différence en énergie entre les orbitales Ψ2 et est très inférieure à la différence entre les orbitales π et π* de l’éthylène.
On dit que la conjugaison a un effet bathochrome, c’est‐à‐dire qu’elle rapproche la bande d’absorption d’un chromophore donné vers le visible (redshift ou augmentation de longueur d’onde). Le déplacement en sens inverse (blueshift ou diminution de longueur d’onde) est un effet hypsochrome....
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Application à la détermination des structures
BIBLIOGRAPHIE
-
(1) - * - Des compléments d’information pourront être trouvés dans les ouvrages généraux suivants dont quelques figures ont été extraites :
-
(2) - JAFFE (H.H.), ORCHIN (M.) - Theory and Applications of Ultraviolet Spectroscopy - . John Wiley and Sons Éditeur, New York, Londres, Sydney (1965).
-
(3) - CROOKS (J.E.) - The Spectrum in Chemistry - . Chapitre 6, Academic Press Éditeur, Londres New York, San Francisco (1978).
-
(4) - COOPER (J.W.) - Spectroscopic Techniques for Organic Chemists - . Chapitres 7 et 8, John Wiley and Sons Éditeur, New York, Chichester, Brisbane, Toronto (1980).
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive