Présentation

Article

1 - ÉQUILIBRE DES PHASES

2 - FORMES D’ÉQUILIBRE DES CRISTAUX

3 - COUCHES MINCES. NUCLÉATION

  • 3.1 - Nucléation tridimensionnelle
  • 3.2 - Nucléation bidimensionnelle
  • 3.3 - Mécanisme de Stranski-Krastanov
  • 3.4 - Nucléation non classique
  • 3.5 - Cinétique de la nucléation

4 - CROISSANCE DES CRISTAUX

Article de référence | Réf : A245P1 v1

Croissance des cristaux
Surface des solides - Couches minces. Croissance cristalline

Auteur(s) : Boyan MUTAFTSCHIEV

Date de publication : 10 févr. 1990

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Boyan MUTAFTSCHIEV : Directeur de Recherche au CNRS, Laboratoire Maurice Letort, Villers-lès-Nancy

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Cet article traite les phénomènes ayant lieu à l’interface entre un solide et son milieu, à l’équilibre et en cas de croissance du solide. Le trait commun est la rencontre, à l’interface, de deux flux de matière de sens opposés : l’un, constitué de molécules qui s’y déposent avant d’être incorporées dans le réseau cristallin, l’autre, de molécules qui quittent l’interface en direction du milieu. À l’équilibre, l’intensité des deux flux est égale et dépend de la cinétique interfaciale, elle-même régie par les propriétés des phases au voisinage immédiat de l’interface. À la sursaturation, représentée par la différence des potentiels chimiques dans les deux phases, le flux de croissance est prédominant, sans qu’il existe cependant une dépendance linéaire entre le flux net et la sursaturation, comme l’on aurait pu s’y attendre par analogie avec l’électrodynamique en assimilant l’interface à une résistance passive.

La voie que nous nous proposons de suivre passe donc par la considération des équilibres à l’interface entre un cristal et son milieu, qui nous révèlent les mécanismes microscopiques à la saturation, avant d’aborder la cinétique interfaciale de croissance, dont la dépendance avec la sursaturation peut être assez complexe. Deux remarques découlent de cette procédure.

—[nbsp ]L’approche utilisée est exclusivement moléculaire-statistique. Par rapport à l’approche basée sur la thermodynamique classique et sur la mécanique des milieux continus , la méthode choisie a l’avantage de mieux visualiser les phénomènes physiques, au prix de quelques concessions à la rigueur mathématique. En outre, elle s’avère mieux adaptée au traitement des systèmes à énergie de surface élevée et fortement anisotrope, tel un cristal qui croît à partir de sa vapeur.

—[nbsp ]Il faut souligner que la cinétique globale de croissance dépend autant de la cinétique interfaciale que de la cinétique du transport de matière du milieu vers l’interface. Cependant, les mécanismes du transport dans le volume sont communs à d’autres procédés (génie chimique, combustion, etc.) et sont traités en détail par la mécanique des fluides, d’où notre choix de ne pas dépasser dans cet article le cadre des phénomènes interfaciaux.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-a245p1


Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Croissance des cristaux

La croissance d’une phase condensée, liquide ou solide, à partir de sa phase mère sursaturée, est mesurée par le flux net de matière traversant l’interface. Cependant, dans le mécanisme global du transport, l’incorporation des molécules dans les sites de croissance n’est pas la seule étape susceptible d’opposer une résistance à ce flux. D’autres, tels l’attachement et l’accommodation de molécules du voisinage immédiat de l’interface sur cette dernière ou la diffusion au sein de la phase mère, peuvent autant ralentir la croissance que la cinétique interfaciale. Étant donné que la sursaturation appliquée comprend la différence entre le potentiel chimique de la phase mère, à une distance infinie de la surface, et celui de la phase condensée, il est clair que chacune des étapes en question a comme force motrice une fraction de la sursaturation, ce qui ne facilite pas le calcul de la vitesse de croissance d’une face cristalline, qui fait l’objet de ce qui suit. Nous allons considérer successivement les étapes énumérées ci-avant, en nous arrêtant plus particulièrement sur la cinétique interfaciale. Dans un but de simplicité, nous allons supposer à chaque fois que l’étape considérée est plus lente que l’ensemble des autres, ce qui a comme résultat de voir la totalité de la sursaturation s’appliquer à cette seule étape, tout comme dans une analogie électrique on retrouve la quasi-totalité de la tension appliquée à une série d’impédances aux bornes de l’impédance la plus grande.

4.1 Croissance des faces K

Nous avons vu que la surface d’une face K contient un très grand nombre de sites de pas répétable. Sur ce type de faces, les flux d’échange de matière vers (ou à partir de) la phase mère peuvent être considérables, tout en étant égaux à l’équilibre.

À la sursaturation, le flux de croissance j c est plus important que celui, j e , d’évaporation. Cependant, tant que j c reste du même ordre de grandeur que le flux d’échange à l’équilibre j 0 » j e , aucune sursaturation ne s’installe au niveau des sites de croissance : tout se passe comme si ces sites continuaient à être entourés de la phase mère saturée (à pression...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Croissance des cristaux
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BEVER (M.B.) -   Encyclopedia of materials science and engineering  -  (8 volumes). New York Pergamon Press (contient de très nombreux articles sur les surfaces, l’adsorption, la ségrégation et les applications) (1986).

  • (2) - SOMORJAI (G.A.) -   Chemistry in two dimensions. Surfaces.  -  Ithaca, Cornell University Press (1981).

  • (3) - BERTHIER (Y.), DELAMARE (F.), HONDROS (E.), HUBER (M.), MARCUS (P.), MASSON (A.), OUDAR (J.), RHEAD (G.E.) -   Adsorption on metal surfaces, an integrated approach.  -  Amsterdam, ed. BENARD (J.) Elsevier Sci. Publ. Co (1983).

  • (4) - ERTL (G.), KUPPERS (J.) -   Low energy electrons and surface chemistry.  -  Weinheim Verlag Chemie (1985).

  • (5) - OTHANI (H.), KAO (C.T.), VAN HOVE (M.A.), SOMORJAI (G.A.) -   A tabulation and classification of the structures of clean solid surfaces and of adsorbed atomic and molecular monolayers as determined from low energy electron diffraction patterns.  -  Progress in Surface Science (USA), 23, p. 155-316 (1986).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS