Présentation

Article

1 - COULEUR

2 - SIMULATION DES VALEURS TRICHROMATIQUES

3 - APPLICATIONS

4 - CONCLUSION

Article de référence | Réf : AF6810 v1

Applications
Simulation de la perception des couleurs de colorants organiques

Auteur(s) : Adèle D. LAURENT, Valérie WATHELET, Michaël BOUHY, Denis JACQUEMIN, Eric PERPÈTE

Relu et validé le 10 févr. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La couleur d'un objet n'est pas liée à la matière de manière intrinsèque, elle est plutôt une perception, une interprétation de la lumière renvoyée ou absorbée par l'objet. Il convient donc d'étudier les colorants, très utilisés dans l'industrie (automobile, cosmétologie, chimie, bâtiment...), avec le plus grand soin. La méthode réside dans le fait de quantifier la couleur d'un colorant à partir du calcul de son spectre d'absorption. Les paramètres comme le spectre d'absorption du colorant, la densité spectrale de l'illuminant ainsi que la réflexion du support sont au cœur des modèles colorimétriques.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Adèle D. LAURENT : Doctorante au laboratoire de chimie et biochimie théoriques (Université de Nancy) - Institut Jean Barriol

  • Valérie WATHELET : Scientifique, groupe de chimie physique théorique et structurale (FUNDP-Namur)

  • Michaël BOUHY : Chimiste et informaticien, diplômé d'un master en sciences chimiques et d'un master en sciences informatiques (FUNDP-Namur)

  • Denis JACQUEMIN : Chercheur qualifié (FNRS) au laboratoire de chimie théorique appliquée, unité de chimie physique théorique et structurale (FUNDP-Namur)

  • Eric PERPÈTE : Maître de recherche (FNRS) au laboratoire de chimie théorique appliquée, unité de chimie physique théorique et structurale (FUNDP-Namur)

INTRODUCTION

Les colorants sont très utilisés dans l'industrie chimique (recherche de nouvelles teintes, solidité des tons…) pour rehausser les qualités esthétiques des plastiques et pour procurer une bonne protection contre les ultra-violets. Dans l'industrie automobile, les pigments sont d'origine minérale ou organique et insolubles. Ils confèrent à la peinture (selon leur nature) des propriétés d'anti-corrosion, d'opacité, ou encore, d'étanchéité. Par ailleurs, tous les colorants non allergènes sont utilisés dans l'industrie des cosmétiques. Ils ont aussi de nombreuses applications dans l'industrie du textile, de l'imprimerie, de l'art, de l'alimentation et du bâtiment.

La couleur est avant tout une perception. Il est donc excessif de penser que la matière possède une couleur intrinsèque. En effet, un textile qui apparaît rouge sous la lumière du jour peut être noir sous un éclairage vert, parce qu'il absorbe toutes les lumières reçues sauf celles de longueurs d'ondes élevées. Il résulte de cette observation préliminaire qu'il faut définir plus précisément la couleur. La lumière est produite par un illuminant puis elle interagit avec la matière, l'objet. Finalement, une certaine quantité de lumière est perçue par l'observateur que son œil décompose en trois signaux électriques envoyés au cerveau. C'est celui-ci qui crée la sensation de couleur. La perception physiologique est liée à trois paramètres :

  • la nature de l'objet éclairé ;

  • la lumière qui éclaire l'objet (l'illuminant). Une source lumineuse est aussi dite illuminant primaire, tandis qu'une surface diffusant ou réfléchissant la lumière sera appelée illuminant secondaire ;

  • le capteur (l'œil) qui reçoit le message et le communique au cerveau grâce à des impulsions électriques. Rappelons que la couleur n'est rien d'autre que la perception par l'œil d'une distribution spectrale R (λ). Il est important de constater que l'œil ne peut pas faire la différence entre, par exemple, un jaune monochromatique et un mélange en quantité égale de rouge et de vert. Cette propriété permet de faire ce que l'on appelle la synthèse trichrome, qui est à la base de toute la colorimétrie (synthèse additive). La couleur est donc un stimulus qui est conventionnellement reconstitué par trois primaires : le rouge (source de 700,0 nm), le vert (source de 546,1 nm) et le bleu (435,8 nm).

Il est donc intéressant de quantifier la couleur d'un colorant à partir du calcul de son spectre d'absorption. Différents modèles colorimétriques impliquant tant le spectre d'absorption du colorant que la densité spectrale de l'illuminant et la réflexion du support sont ainsi mis en œuvre. Dans la suite sont présentés un logiciel et un modèle tant pour simuler l'absorption, la transmission, la réflexion que la perception de l'œil humain. La qualité du programme a été testée au travers de plusieurs cas académiques et l'influence sur les valeurs trichromatiques simulées de chacun des paramètres du programme a été étudiée.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af6810


Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

3. Applications

3.1 Brefs rappels de chimie calculatoire

Grâce à la chimie théorique, des calculs permettent de rationaliser, en termes colorimétriques, le spectre visible de colorant comme l'anthraquinone ou l'indigo. En effet, la résolution de l'équation de Schrödinger (27) indépendante du temps détermine l'énergie totale de la molécule :

HΨ=EΨ ( 27 )

où le Hamiltonien H est un opérateur non relativiste, Ψ la fonction d'onde et E l'énergie qui y est associée. La fonction d'onde n'a pas de signification physique comme telle, seul le carré de son module (|Ψ2|) représente la densité de probabilité de présence des particules dans une configuration spatiale donnée : |Ψ2| = dP/dV. Le vecteur propre de cette équation est la fonction d'onde polyélectronique du colorant, exprimée grâce aux orbitales moléculaires ψ . Ces orbitales moléculaires sont, également, construites comme des combinaisons de fonctions atomiques fμ :

ψi=μ=1KCμiϕμ ( 28 )

K est le nombre de spin-orbitales, Cμi sont les coefficients LCAO (Linear Combination of Atomic Orbitals ). Les fonctions atomiques fμ , dont la dépendance radiale est de forme exponentielle sont elles-mêmes approximées par une contraction de gaussiennes (Gaussian Type Orbital ).

Le développement serait exact si on utilisait une base complète de fonctions, mais le nombre théorique d'intégrales biélectroniques à calculer est proportionnel à la quatrième puissance de K. On note que plus le nombre de gaussiennes est important et plus les moments angulaires...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Applications
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - DÉRIBÉRÉ (M.) -   La couleur.  -  Que sais-je ? PUF France (1968).

  • (2) - JONES (A.L.), ADAMS (Q.E.), BELLAMY (R.B.), BITTINGER (C.), CRITTENDEN (E.C.), DRAVES (Z.C.), EVANS (M.R.), FORREST (W.J.), FOSS (E.C.), GAGE (P.H.), GIBSON (S.H.), GODLOVE (H.I.), HARDY (C.A.), JOBE (W.F.), JUDD (B.D.), LOWRY (M.E.), LUCKIESH (M.), MACADAM (D.L.), NEWHALL (M.S.), NICKERSON (D.), O'BRIEN (B.), PAUL (R.M.), SLOAN (L.L.) -   The science of color.  -  Optical, society of America, Washington (1963).

  • (3) - CRAWFORD (B.H.) -   *  -  Proceedings of the physical society, section B, no 62, p. 321-334 (1949).

  • (4) - BROARDBENT (A.D.) -   Calculation from the original experimental data of the CIE 1931RGB standard observer spectral chromaticity co-ordinates and color matching functions.  -  Département de génie chimique, université de Sherbrooke.

  • (5) - BROARDBENT (A.D.) -   Trichromatic color matching.  -  Département de génie chimique, université de Sherbrooke.

  • ...

DANS NOS BASES DOCUMENTAIRES

1 Outils logiciels

GIMP (Gnu Image Manipulation Program) logiciel libre de traitement d'images http://www.gimp.org

ColorCombinate logiciel libre de traitement d'images http://www.colorcombinate.sourceforge.net

Gaussian03 logiciel de calcul de chimie théorique http://www.gaussian.net

JQuickColor logiciel de simulation de couleurs (contact [email protected])

HAUT DE PAGE

2 Site Internet

Oregon Medical Laser Center http://omlc.ogi.edu/

Les normes ISO http://www.iso.org/iso/fr/home.htm

La CIE https://cie.co.at/

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS