Présentation

Article

1 - ÉTUDE DÉTAILLÉE DE QUELQUES AMPLIFICATEURS

  • 1.1 - Levier
  • 1.2 - Couple d'engrenage
  • 1.3 - Pinces étaux
  • 1.4 - Mécanismes de blocage
  • 1.5 - Broyeur de roches

2 - MODÈLE D'ÉTUDE

  • 2.1 - Équation de liaison
  • 2.2 - Gain en vitesse
  • 2.3 - Gain en effort

3 - COMPORTEMENT DYNAMIQUE

  • 3.1 - Modèle du dispositif test
  • 3.2 - Mise en équation
  • 3.3 - Analyse des actions mécaniques agissant sur le mécanisme d'essai
  • 3.4 - Écriture de l'équation

4 - ÉTAT D'ÉQUILIBRE, STABILITÉ

  • 4.1 - État d'équilibre
  • 4.2 - Équation du mouvement voisin
  • 4.3 - Condition de stabilité

5 - PROBLÈME DU FROTTEMENT DE TYPE COULOMB

6 - PERTE DE GAIN PAR DÉFORMATION DES SOLIDES DU MÉCANISME

Article de référence | Réf : AF1673 v1

Modèle d'étude
Amplificateurs mécaniques passifs modernes - Concepts fondamentaux

Auteur(s) : Jean-Pierre BROSSARD

Date de publication : 10 juil. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article, le premier d’une série de 3, est consacré à l’étude des principes et des concepts de bases qui permettent de conduire les calculs de dimensionnement d’un amplificateur mécanique passif. Il décrit en détail l’établissement de l’équation de liaison, du gain en vitesse et du gain en effort qui constitue en quelque sorte la réponse stationnaire. Si l’étude est générale elle est appliquée en parallèle et en détail à un exemple fondamental. Ces éléments de base étant établis deux chapitres importants sont consacrés l’un à la réponse dynamique et à la stabilité du système l’autre au traitement du frottement dans les articulations.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

This article, the first in a series of three, is devoted to the study of the principles and basic concepts underlying sizing calculations for a passive mechanical amplifier. It describes in detail the establishment of the kinematic constraint equation, gain in speed and gain in effort, which can be considered as the stationary response. The study is general, but it is applied in parallel and in detail in a basic example. These basic elements being established, two important sections are devoted (i) to the dynamic response and stability of the system and (ii) to the treatment of friction in the joints.

Auteur(s)

  • Jean-Pierre BROSSARD : Professeur de mécanique - Institut national de sciences appliquées, Lyon, France

INTRODUCTION

Les multiplicateurs d'actions mécaniques ou amplificateurs passifs sont des mécanismes destinés à obtenir des actions mécaniques importantes à partir d'actions mécaniques facilement disponibles, en général humaines. Ils permettent d'amplifier les forces ou les couples. Leur usage est universel et leur histoire se confond avec celle de l'humanité.

Notons qu'il ne faut pas confondre les multiplicateurs d'effort avec de véritables amplificateurs mécaniques actifs qui sont des servomécanismes. Ces derniers ont donné lieu aux servofreins mécaniques largement utilisés dans l'industrie automobile avant la Seconde Guerre mondiale (Hallot, Renault, Hispano-Suiza). Dans les servomécanismes, il y a apport extérieur d'énergie et l'on distingue la partie commande de la partie actionnement, l'effort humain se limitant pratiquement à la commande. Dans tout ce qui suit il ne sera question que de mécanismes multiplicateurs ou amplificateurs passifs.

Cet article est le premier d'une série de trois articles. Nous passerons en revue un certain nombre d'exemples familiers puis nous étudierons en détail un amplificateur type en dégageant les principes fondamentaux comme le gain en effort ou le gain en vitesse.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

mechanisms   |   gearing   |   lever   |   mechanical amplifier

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af1673


Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

2. Modèle d'étude

Nous prendrons comme exemple un système très utilisé, le mécanisme dit genouillère schématisé à la figure 6. Il s'agit du système typiquement utilisé pour le broyeur de roches afin d'obtenir une force d'écrasement très importante.

Il est constitué des barres S 1  , S 2  , AB, OA qui sont des solides rigides. Les liaisons en O, A, B sont des liaisons rotoîdes d'axe . Les autres liaisons sont des liaisons prismatiques.

Dans cette schématisation où il s'agit de cinématique et de géométrie on a utilisé pour la simplicité de représentation certaines liaisons prismatiques. Mais pour la réalisation, il faudra se garder d'une telle idée et en principe les remplacer par un système équivalent fait de liaison rotoïdes. Notons encore que, dans les livres de technologie, la liaison rotoïde est dite pivot et la liaison prismatique dite glissière.

À l'entrée du mécanisme, en A, le torseur des actions extérieures est réductible à un vecteur glissant . À la sortie du mécanisme, en C, le torseur des actions mécaniques est réductible à un vecteur glissant . Les points A, B sont repérés par et .

2.1 Équation de liaison

Cette étape est capitale. On peut dire en quelque sorte que l'équation de liaison est la signature du mécanisme en tant qu'amplificateur. Ici, l'établissement de l'équation de liaison est évidente. En général, il n'en est pas ainsi. Chaque mécanisme innovateur est une invention, en fait un cas singulier. Ici le mécanime est un...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Modèle d'étude
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BROSSARD (J.P) -   Dynamique du véhicule.  -  PPUR (2006).

  • (2) - BRICARD (R.) -   Cinématique théorique. Cinématique appliquée.  -  Gauthier Villars (1927).

  • (3) - PAUL (B.) -   Kinematics and dynamics of planar machinery.  -  Prentice-Hall (1979).

  • (4) - ARTOBOLESKI (I.) -   Les mécanismes dans la technique moderne.  -  MIR (1975).

  • (5) - ARTOBOLESKI (I.) -   Théorie des mécanismes et des machines.  -  MIR (1977).

  • (6) - REULEAUX (F.) -   Cinématique.  -  Savy (1977).

  • (7) - MABIE...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS