Présentation
RÉSUMÉ
La turbulence est un phénomène physique tellement complexe qu’à ce jour encore aucun modèle ne parvient à le mimer de manière satisfaisante, et ce même avec les performances actuelles de l’informatique. Cet article livre les fondements de la théorie de la turbulence et l’application des ondelettes à la dynamique des fluides. Il s’attarde sur l’exemple d’un écoulement bidimensionnel dans un canal perturbé par une rangée horizontale d’obstacles circulaires, traité à travers deux simulations numériques.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Auteur(s)
-
Patrick FISCHER : Docteur en mathématiques - Maître de conférences - Laboratoire de mathématiques appliquées de Bordeaux - Université de Bordeaux I
INTRODUCTION
Le problème de la turbulence, et en particulier celui de la modélisation de la trainée d’un objet à travers un fluide (liquide ou gazeux), a occupé et fasciné des générations de scientifiques, de Léonard De Vinci au 16e siècle (figure 1) à nos jours. Des enjeux scientifiques, tels que la prédiction météorologique ou les changements climatiques par exemple, ainsi qu’économiques comme la conception de profils de voitures, d’avions ou de navires, reposent sur une meilleure compréhension des phénomènes turbulents. Malgré des années de recherche, aucune théorie complète de la turbulence n’a pu être développée.
L’application des ondelettes à la dynamique des fluides a fait l’objet de nombreuses publications depuis 1992 . L’idée principale développée dans ces publications est que le champ de vorticité d’un flot turbulent peut facilement être décomposé en parties cohérentes et incohérentes grâce à une décomposition en ondelettes orthogonales. La partie cohérente, correspondant aux coefficients en ondelettes les plus grands, est en fait composée des tourbillons, et la partie « incohérente », correspondant aux coefficients en ondelettes les plus petits, représente le reste de l’écoulement. Il n’existe cependant pas de définition bien établie de ce qui est cohérent et incohérent. Ainsi, pour certains auteurs, la séparation repose sur le caractère gaussien ou non de la PDF (fonction de densité de probabilités) : partie cohérente non gaussienne, et partie incohérente gaussienne. Cependant, dans une telle séparation, les filaments de vorticité, bien visibles dans le champ du même nom, se retrouvent partiellement dans la partie cohérente, et dans la partie incohérente. Pour d’autres, dont l’auteur de ce texte, les tourbillons et les filaments de vorticité possèdent une certaine cohérence.
Ce dossier propose de donner au lecteur les connaissances de base sur la théorie de la turbulence, ainsi que sur celle des ondelettes, lui permettant ainsi d’appréhender la complexité des phénomènes turbulents et d’utiliser les derniers outils mathématiques développés pour comprendre ces phénomènes.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Conclusion
La modélisation mathématique d’un phénomène physique consiste à essayer de « mimer », d’imiter le comportement d’un système réel. Plus ce système est complexe, comme la turbulence, plus cette « imitation » est difficile. Le rapide développement de l’informatique permet de réaliser des calculs et des simulations numériques de plus en plus performants, mais le niveau de complexité est tel que nous n’avons toujours pas une bonne compréhension de la turbulence. Malgré une description statistique à peu près correcte sous certaines hypothèses, le rôle des structures observées dans les écoulements turbulents n’est toujours pas bien déterminé. Les décompositions basées sur des analyses temps-échelles, et en particulier sur des paquets d’ondelettes, permettent de séparer des structures ayant des comportements différents dans l’écoulement : les tourbillons et les filaments de vorticité. Cette séparation révèle que ces structures ont des spectres d’énergie vérifiant des lois de puissance, indiquant des cascades d’énergie et/ou d’enstrophie à travers les différentes échelles de l’écoulement. De plus, ces lois de puissance étant différentes, nous pouvons légitimement supposer que ces structures ont des rôles énergétiques différents dans l’écoulement. La confrontation des résultats numériques avec les expérimentations physiques, lorsque cela est possible, permet de valider ou non ces modèles mathématiques théoriques.
Remerciements
L’auteur remercie Ch.-H. Bruneau pour ses commentaires et pour avoir fourni les champs de vitesse et de vorticité sur lesquels les décompositions en paquets d’ondelettes ont été réalisées.
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - ANGOT (Ph.), BRUNEAU (C.H.), FABRIE (P.) - A penalization method to take into account obstacles in incompressible viscous flow - . Numer. Math., 81, no. 4, p. 497-520 (1999).
-
(2) - ARQUES (P.), THIRION-MOREAU (N.), MOREAU (E.) - Les représentations temps-fréquences en traitement du signal - . Techniques de l’Ingénieur, traité Mesures et Contrôle [R 308] (2000).
-
(3) - BATCHELOR (G.K.) - Computation of the energy spectrum in homogeneous two-dimensional turbulence - . Phys. Fluids, 12, II-233-II-239 (1969).
-
(4) - BORUE (V.) - Inverse energy cascade in stationary two-dimensional homogeneous turbulence - . Phys. Rev. Lett., 72, p. 1475-1478 (1994).
-
(5) - BRUNEAU (C.-H.), GREFFIER (O.), KELLAY (K.) - Numerical study of grid turbulence in two dimensions and comparison with experiments on turbulent soap films - . Phys. Rev. E, 60, p. R1162 (1999).
-
...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive