Présentation
EnglishAuteur(s)
-
Bernard RANDÉ : Ancien élève de l’école normale supérieure de Saint-Cloud - Docteur en mathématiques - Agrégé de mathématiques - Professeur de mathématiques spéciales au lycée Saint-Louis
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les systèmes dynamiques n’ont été étudiés en tant que tels que assez tardivement. Ils sont néanmoins apparus assez tôt dans l’histoire scientifique, puisque l’on peut les reconnaître dans les premiers travaux de la mécanique donnant lieu à des équations différentielles.
Schématiquement, un tel système est la donnée d’une loi d’évolution qui, à partir de conditions initiales, détermine le futur d’un phénomène. Le paradigme en est l’équation différentielle, qui exprime une loi régissant, elle-même, l’évolution temporelle d’un phénomène convenablement paramétré. Cette loi détermine l’évolution du système lorsque les paramètres sont connus à un certain instant. Sous cette forme, le système dynamique ne peut rendre compte que d’une loi déterministe.
La résolution explicite, ou même approchée, d’une équation différentielle, est en général impossible. Dans une large mesure, l’étude des systèmes qui nous occupent vise à formuler les termes d’une étude qualitative des phénomènes.
Dans le cadre de cet article, nous nous contenterons d’introduire le langage nécessaire, en restant dans un cadre élémentaire. Nous n’aborderons pas vraiment le problème fondamental de la perturbation dans un système dynamique ou d’un système dynamique, qui fait l’objet d’un article séparé, dont la lecture suppose la connaissance des notions développées dans le présent article
Le but de la partie 1 est de fournir des exemples d’équations différentielles sur lesquels est présenté informellement le langage. Celui-ci sera précisé dans le cadre de la partie 2, où sont aussi fournis les outils élémentaires sur les équations différentielles. La partie 3 donne l’occasion de mettre en œuvre ces outils. La partie 4 dégage, sans y insister, les propriétés fondamentales, qui permettent d’introduire les systèmes dynamiques discrets. Dans la partie 5, on trouvera traités des exemples très simples de systèmes dynamiques dans .
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Quelques exemples de systèmes dynamiques simples
5.1 Systèmes dynamiques continus dans
Nous considérons ici une équation autonome :
où f est une application de classe C 1 d’un intervalle ouvert J de
, vers . On notera que le caractère ouvert de J n’est pas essentiel dans la suite ; nous ferons cette hypothèse pour nous situer pleinement dans les conditions de la définition 2.
Nous appelons Z l’ensemble des positions d’équilibre, c’est-à-dire l’ensemble des α de J tels que . Nous limitons notre étude aux trajectoires non constantes.
Soit une telle trajectoire. Puisque , est inclus dans...?xml>?xml>?xml>
?xml>Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Quelques exemples de systèmes dynamiques simples
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive