Présentation
EnglishAuteur(s)
-
Bernard RANDÉ : Ancien élève de l’école normale supérieure de Saint-Cloud - Docteur en mathématiques - Agrégé de mathématiques - Professeur de mathématiques spéciales au lycée Saint-Louis
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les systèmes dynamiques n’ont été étudiés en tant que tels que assez tardivement. Ils sont néanmoins apparus assez tôt dans l’histoire scientifique, puisque l’on peut les reconnaître dans les premiers travaux de la mécanique donnant lieu à des équations différentielles.
Schématiquement, un tel système est la donnée d’une loi d’évolution qui, à partir de conditions initiales, détermine le futur d’un phénomène. Le paradigme en est l’équation différentielle, qui exprime une loi régissant, elle-même, l’évolution temporelle d’un phénomène convenablement paramétré. Cette loi détermine l’évolution du système lorsque les paramètres sont connus à un certain instant. Sous cette forme, le système dynamique ne peut rendre compte que d’une loi déterministe.
La résolution explicite, ou même approchée, d’une équation différentielle, est en général impossible. Dans une large mesure, l’étude des systèmes qui nous occupent vise à formuler les termes d’une étude qualitative des phénomènes.
Dans le cadre de cet article, nous nous contenterons d’introduire le langage nécessaire, en restant dans un cadre élémentaire. Nous n’aborderons pas vraiment le problème fondamental de la perturbation dans un système dynamique ou d’un système dynamique, qui fait l’objet d’un article séparé, dont la lecture suppose la connaissance des notions développées dans le présent article
Le but de la partie 1 est de fournir des exemples d’équations différentielles sur lesquels est présenté informellement le langage. Celui-ci sera précisé dans le cadre de la partie 2, où sont aussi fournis les outils élémentaires sur les équations différentielles. La partie 3 donne l’occasion de mettre en œuvre ces outils. La partie 4 dégage, sans y insister, les propriétés fondamentales, qui permettent d’introduire les systèmes dynamiques discrets. Dans la partie 5, on trouvera traités des exemples très simples de systèmes dynamiques dans .
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. L’exemple du pendule simple
Nous allons dans ce paragraphe introduire un système, approximant un système physique élémentaire. Après avoir modélisé ce système, nous constaterons que son évolution obéit à une équation différentielle autonome d’ordre 2, c’est-à-dire à un système différentiel autonome de taille 2. Nous étudierons alors les solutions, dans le but à la fois d’utiliser les outils introduits dans le paragraphe 2, de tracer le portrait de phase et d’illustrer le langage propre aux systèmes autonomes. Nous démontrerons aussi, volontairement, des résultats qui, dans ce cas, pourraient paraître évidents (qui n’a pas assisté à cette expérience, au moins virtuellement ?), principalement pour pouvoir les appliquer plus tard dans des contextes où le but de la théorie serait de prévoir, et non pas de confirmer, des résultats physiques.
3.1 Le problème physique et sa loi d’évolution
On considère une tige rigide de longueur , à l’extrémité E de laquelle est fixée une masse m. L’autre extrémité du pendule peut tourner autour d’un point fixe F ; la masse de la tige est supposée nulle. Le pendule est placé dans un champ gravitationnel constant de l’espace affine euclidien de dimension 3. Constant signifie ici indépendant de la position et de l’instant. On supposera, pour conserver une situation traditionnelle, que le champ est d’intensité g, de sorte que l’accélération subie par une masse m est ?xml>?xml>
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
L’exemple du pendule simple
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive