Présentation
En anglaisAuteur(s)
-
Pierre SPITERI : Docteur ès sciences mathématiques - Professeur à l’École nationale supérieure d’électronique, d’électrotechnique, - d’informatique, d’hydraulique et de télécommunication de Toulouse (ENSEEIHT)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
On a vu dans l’article [AF 503] qu’une équation aux dérivées partielles ellip-tique pouvait être exprimée sous diverses formulations équivalentes, en ce sens que toute solution d’une formulation est solution d’une autre formulation et réciproquement. La formulation forte du problème présente un intérêt dans la mesure où l’utilisation de la méthode des différences finies est envisagée pour effectuer une approximation du problème. La formulation équivalente du problème basée sur la formulation d’un problème d’optimisation associé à la fonctionnelle , avec définie par :
nécessite que la forme bilinéaire soit symétrique, ce qui en soit est restrictif dans la mesure où certains phénomènes sont modélisés à partir d’opérateurs non autoadjoints. Cependant, lorsque a(.,.) est symétrique, cette formulation du problème conduit à la méthode de Ritz ; numériquement, l’idée est de chercher à minimiser J(.) non plus sur l’ensemble E tout entier, mais sur un sous-espace de E construit à partir de fonctions facilement calculables ; la fonction inconnue qui réalise le minimum est représentée comme combinaison linéaire de fonction de forme (ou de tout autre famille physiquement admissible) et les coefficients de cette combinaison linéaire sont les inconnues du problème. J(.) est alors transformée en une fonctionnelle quadratique et déterminer le minimum de cette nouvelle fonctionnelle revient alors à annuler les dérivées partielles de celle-ci par rapport à ces inconnues, ce qui conduit classiquement à la résolution d’un système linéaire. Nous ne développerons pas cette méthode.
L’autre formulation équivalente mise en évidence est la formulation faible ou formulation variationnelle basée sur le théorème des travaux virtuels ; cette expression équivalente du problème contient l’ensemble des informations relatives à ce dernier, c’est-à-dire l’équation aux dérivées partielles et les conditions aux limites ; elle offre, de plus, une grande possibilité de calculs effectifs des solutions approchées en choisissant des sous-ensembles de l’espace fonctionnel E bien adaptés au calcul numérique. La méthode de base de l’approximation est la méthode de Galerkin, qui consiste à choisir la fonction inconnue sous forme de combinaison linéaire de fonctions de forme de manière à obtenir un système discret en choisissant successivement comme fonction test dans la formulation faible ces mêmes fonctions de forme. Bien évidemment, dans le cas où les sous-espaces de E sont identiques, les systèmes linéaires dérivés de la méthode de Ritz et de la méthode de Galerkin sont les mêmes. Un cas particulier de la méthode de Galerkin est la méthode des éléments finis que nous allons développer dans cet article et dont le grand intérêt est constitué par sa grande souplesse.
Cet article est le second volet d’un ensemble de trois articles traitant de la méthode des éléments finis :
-
[AF 503] Approche variationnelle pour la méthode des éléments finis ;
-
[AF 504] Introduction à la méthode des éléments finis ;
-
[AF 505] Présentation générale de la méthode des éléments finis.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Introduction des éléments finis en dimension 2
Nous allons généraliser la méthode décrite au paragraphe 1 ; sauf indication contraire spécifiée dans les remarques qui suivront, on considérera dans ce paraghraphe le cas d’un problème aux limites avec conditions aux limites de Dirichlet homogènes. On supposera que le domaine est polyédrique ; on s’affranchira de cette hypothèse restrictive au paragraphe 2.4 de l’article [AF 505]. On effectue une « triangulation » du domaine , c’est-à-dire que l’on suppose que l’on peut découper en M triangles , tels que les conditions suivantes soient vérifiées :
Cette « triangulation » est représentée sur la figure 4.
Remarque
On suppose dans la suite que d’un sommet de chaque triangle partent toujours plusieurs côtés, la situation représentée sur la figure 5 étant interdite.
Remarque
Si...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Introduction des éléments finis en dimension 2
BIBLIOGRAPHIE
-
(1) - RAVIART (P.A.), THOMAS (J.M.) - Introduction à l’analyse numérique des équations aux dérivées partielles. - Collection Mathématiques Appliquées, Masson (1983).
-
(2) - AXELSON (O.), BARKER (V.A.) - Finite element solution of boundary value problems. Theory and computation. - Academic Press (1984).
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive