Présentation
En anglaisRÉSUMÉ
L’électrolyse de l’eau permet d’obtenir de l’hydrogène et de l’oxygène de grande pureté. Mais le contexte énergétique actuel provoque un regain d’intérêt pour la production électrolytique d’hydrogène à partir de sources d’énergies renouvelables. La technologie à membrane acide, appelée PEM, présente des avantages certains par rapport à la technologie alcaline. En particulier, l’absence d’électrolyte liquide corrosif permet de concevoir des électrolyseurs fiables, fonctionnant à haute pression, sous forte densité de courant avec des rendements énergétiques supérieurs à 80 %.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Electrolysis of water yields hydrogen and oxygen of high purity. But the current energy situation has provoked renewed interest in electrolytic production of hydrogen from renewable energy sources. Acid membrane technology, called PEM, has certain advantages over alkaline technology. In particular, the absence of corrosive liquid electrolyte allows for the design of reliable electrolyzers that can operate at high pressure under high current density with greater than 80% energy output.
Auteur(s)
-
Pierre MILLET : Ingénieur de l’Institut national polytechnique de Grenoble - Maître de conférences à l’université Paris-sud
INTRODUCTION
L’électrolyse de l’eau permet d’obtenir de l’hydrogène et de l’oxygène de grande pureté, traditionnellement utilisés dans différents secteurs industriels tels que l’industrie agroalimentaire, l’industrie des semi-conducteurs, ou les applications spatiales et sous-marines. Mais dans le contexte énergétique actuel, la raréfaction des sources d’énergie fossiles liée à la nécessité de réduire les émissions de gaz à effet de serre provoque un regain d’intérêt pour la production électrolytique d’hydrogène (vecteur énergétique) à partir de sources d’énergies renouvelables (voir « Combustible hydrogène. Production » [BE 8 565]). En dépit d’un coût d’investissement encore élevé, du fait de l’utilisation d’électrocatalyseurs à base de métaux nobles, la technologie à membrane acide (plus connue sous l’acronyme anglo-saxon PEM : « proton exchange membrane ») présente des avantages certains par rapport à la technologie alcaline, bien que celle‐ci soit plus mature sur le plan industriel. En particulier, l’absence d’électrolyte liquide corrosif permet de concevoir des électrolyseurs fiables, fonctionnant à haute pression, sous forte densité de courant avec des rendements énergétiques supérieurs à 80 %.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Description des cellules d’électrolyse
3.1 Cellule d’électrolyse complète
Le schéma de principe d’une cellule d’électrolyse à membrane acide dans un empilement de type filtre presse est représenté sur la figure 12.
HAUT DE PAGE3.2 Électrolyte polymère solide
Le matériau membranaire utilisé comme électrolyte solide doit répondre de façon satisfaisante aux exigences suivantes :
-
être facile à mettre sous forme de film homogène de grande surface (membrane) ;
-
présenter une bonne tenue mécanique ;
-
être stable en dimension (notamment en fonction de la teneur en eau) ;
-
être bon conducteur protonique de façon à réduire la chute ohmique dans l’électrolyte ;
-
ne pas être conducteur électronique ;
-
être stable chimiquement (au contact des produits de la réaction que sont l’hydrogène et l’oxygène) et électrochimiquement (au contact des électrodes polarisées) ;
-
être stable thermiquement (jusqu’à 100 oC au moins) ;
-
être bon conducteur thermique de façon à permettre l’évacuation de chaleur générée in situ par effet Joule lors du passage des charges électriques (protons) ;
-
être stable en pression, et pouvoir éventuellement supporter des différentiels de pression élevés ;
-
être aussi imperméable que possible à la diffusion gazeuse, notamment celle de l’hydrogène de la cathode vers l’anode.
Il a été découvert dans les années 1960 et commercialisé par la société américaine DuPont de Nemours sous le nom commercial de Nafion. Ce matériau est un copolymère de tétrafluoréthylène (TFE) et de perfluorovinyléther [7] (figure 13).
Le copolymère ainsi...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Description des cellules d’électrolyse
BIBLIOGRAPHIE
-
(1) - LEROY (R.L.), JANJUA (M.B.I.), RENAUD (R.), LEUENBERGER (U.) - Analysis of Time-Variation in Water Electrolyzers. - Journal of the Electrochemical Society, 126, 1674-1682 (1979).
-
(2) - NAGAI (N.), TAKEUCHI (M.), NAKAO (M.) - Influences of Bubbles between Electrodes onto Efficiency of Alkaline Water Electrolysis. - Proceeding of the fourth Pacific Symposium on Flow Visualisation and Image Processing (PSFVIP-4), Chamonix, France, 3-5 juin 2003.
-
(3) - LEROY (R.L.), BOWEN (C.T.), LEROY (D.J.) - The Thermodynamics of Aqueous Water Electrolysis. - Journal of the Electrochemical Society, 127, 1954 (1980).
-
(4) - ONDA (K.), KYAKUNO (T.), HATTORI (K.), ITO (K.) - Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis. - Journal of Power Sources, 132, 64-70 (2004).
-
(5) - DAMJANOVIC (A.), DEY (A.), BOCKRIS (J.O’M.) - Electrokinetic parameters for hydrogen evolution in aqueous acidic media. - Journal of the Electrochemical Society, 113, 739 (1966).
-
...
ANNEXES
1 Constructeurs (de cellules, de membranes)
(liste non exhaustive)
CETH (Compagnie Européenne des Technologies de l’Hydrogène) http://www.ceth.fr/
DuPont Fuel Cells https://www.dupont.com/industries/energy.html
Norsk Hydro http://www.hydro.com/
HAUT DE PAGE
European Hydrogen and Fuel Cell Technology Platform (HFP) https://www.hfpeurope.org/
HAUT DE PAGE
GenHyPEM http://www.genhypem.u-psud.fr:80/
Projets européens autour de l’hydrogène http://ec.europa.eu/research/leaflets/h2/page_100_fr.html
HAUT DE PAGE
CEA Grenoble ...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive