Présentation
EnglishRÉSUMÉ
La fragmentation est l’opération par laquelle on cherche à réduire la taille et/ou à augmenter la surface spécifique de particules solides. Ce phénomène résulte de l’action d’un champ de contraintes engendré par des forces de contact (compression, cisaillement, torsion, flexion, attrition, plus rarement traction). Son efficacité est toujours évaluée par une mesure de l’accroissement de la finesse. La fragmentation cherche à satisfaire des exigences en vue d’une utilisation précise, comme la réduction des dimensions, l’homogénéisation de mélanges ou l’attribution de spécifications de texture. Parfois, il en découlera d’autres effets pénalisants.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre BLAZY : Professeur honoraire - Ancien Directeur de l’École nationale supérieure de géologie (ENSG)
-
Jacques YVON : Docteur ès sciences - Professeur à l’ENSG, Institut national polytechnique de Lorraine (INPL) - Directeur du laboratoire Environnement et Minéralurgie (LEM) - INPL-CNRS UMR 7569
-
El-Aïd JDID : Docteur ès sciences - Ingénieur de recherche au Laboratoire environnement et minéralurgie (LEM) - INPL-CNRS UMR 7569
INTRODUCTION
La fragmentation est l’opération par laquelle on cherche à réduire la taille et/ou à augmenter la surface développée de l’unité de masse (surface spécifique) de particules solides. Son efficacité est toujours évaluée par une mesure de l’accroissement de la finesse. Les sollicitations mécaniques accroissent l’énergie libre des matériaux, qui va se convertir sous différentes formes. L’énergie de contrainte élastique est ainsi convertie en énergie élastique des défauts de réseau ponctuels (à l’échelle atomique), linéaires (dislocations, macles), plans (défauts d’empilement, joints de grains) ou volumiques (désordres structuraux). La conversion de plus grandes quantités d’énergie libre en énergie de surface engendre la fracturation. D’autres modes de dissipation d’énergie se manifestent par des effets mécanochimiques comme l’amorphisation (massique ou superficielle), l’agglomération, les transitions polymorphiques, etc.
La fragmentation peut avoir des finalités diverses :
-
réduire les dimensions, soit pour faciliter la manutention, le conditionnement ou l’utilisation, soit pour libérer les constituants avant une opération séparative ;
-
éliminer, avant une mise en œuvre, des zones de rupture potentielles (libération d’unités quasi monocristallines) ;
-
augmenter la réactivité vis-à-vis de processus dont la cinétique dépend de la finesse ou du degré de désordre ;
-
homogénéiser (mélanges, dilutions solides, dosages) ;
-
conférer des spécifications de forme, de texture, de distribution granulaire ;
-
modifier la fonctionnalité, soit sous l’effet de l’activation mécanochimique, soit en profitant de la création de nouvelles surfaces pour y implanter les groupes fonctionnels désirés.
La fragmentation cherche toujours à satisfaire des exigences relatives à des utilisations ultérieures et vise, généralement, au moins un des buts prioritaires parmi ceux mentionnés précédemment. Les autres effets, généralement inévitables, seront pénalisants s’ils engendrent des comportements indésirables, mais valorisants si on peut les mettre à profit pour améliorer les propriétés d’usage des substances.
Ce dossier est le premier d’une série. Les suivants traiteront :
-
de la technologie ;
-
des applications à l’industrie des minerais métalliques ;
-
des applications aux minéraux industriels et à diverses fabrications.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Variation des propriétés massiques et superficielles
Les variations des propriétés massiques et superficielles ne sont notables que dans les opérations de broyage fin et ultrafin, susceptibles de modifier l’ordre structural, les énergies superficielles et la nature des interfaces solide-air.
4.1 Ordre structural
pour plus de renseignements, le lecteur se reportera aux articles spécialisés dans les bases de données documentaires Analyse et Caractérisation et Mesures et contrôle des Techniques de l’Ingénieur.
-
En général, toute opération de fragmentation prolongée apporte un désordre qui, à l’échelle de l’organisation cristalline, se manifeste par une dégradation dans la régularité de la périodicité. Cette altération et la diminution du nombre de plans diffractants en phase sont qualitativement révélées par la diminution d’intensité et l’élargissement des réflexions du diffractogramme X ; quantitativement, on peut l’apprécier en mesurant la longueur des domaines d’interaction élastique (domaines cohérents). Cette grandeur déductible de la largeur angulaire à mi-intensité est très facile d’accès (loi de Scherrer, ). Elle offre le double intérêt de renseigner sur les chutes d’ordre selon les différentes directions cristallographiques et, en général, d’être insensible à l’apparition de nouvelles phases. Dans de rares cas où la substance à broyer est le siège de contraintes élastiques résiduelles, la fragmentation engendre, dans ses stades précoces, leur relaxation, et il s’ensuit une paradoxale amélioration de l’ordre qui se traduit par une augmentation du domaine cohérent.
-
La diffraction X est certainement une des plus sûres techniques d’évaluation de la cristallinité, pour peu qu’un minimum de précautions élémentaires soient prises (variations de forme et d’orientation, problèmes de gonflement),...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Variation des propriétés massiques et superficielles
BIBLIOGRAPHIE
-
(1) - ALLEN (T.) - Particle size measurement. - 3rd éd., Chapman & Hall, Londres ; p. 678 (1982).
-
(2) - ANDRES (M.) - Désintégration des roches par impulsions électriques. - In « Nouvelles Techniques de Broyage et Économies d’Énergie », éd. AFME, tome 2, pp. 423-436 (1990).
-
(3) - ANSELM (W.) - Zerkleinerungstechnick und staub. - V.D.I. Verlag (1946).
-
(4) - AOUADJ (O.) - Étude du broyage humide de la muscovite. - Thèse de doctorat de l’université de Haute Alsace, Mulhouse, p. 113 (1994).
-
(5) - AUSTIN (L.G.) - Introduction to the mathematical description of grinding as a rate process. - Powder Technology, 5, pp. 1-17 (1971/72).
-
(6) - AUSTIN (L.G.), KLIMPEL (R.R.) - The theory of grinding operations. - Ind. Eng. Chem.,...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive