Présentation

Article

1 - INTENSIFICATION DES PROCÉDÉS PAR MODIFICATIONS GÉOMÉTRIQUES

2 - APPORTS DE LA FABRICATION ADDITIVE

3 - EXEMPLES D’APPLICATIONS

4 - VERROUS ET PERSPECTIVES DE LA FABRICATION ADDITIVE

5 - CONCLUSION

6 - GLOSSAIRE

Article de référence | Réf : BM7947 v1

Glossaire
Apport de la fabrication additive à l’intensification des procédés

Auteur(s) : Jean-Marc COMMENGE, Laurent FALK, Raphael FAURE, Matthieu FLIN

Date de publication : 10 août 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

L’intensification des procédés est un concept applicable à de nombreuses industries de transformation de la matière et de l’énergie. De nombreuses opérations unitaires sont toutefois limitées par les caractéristiques géométriques des équipements (réacteurs, échangeurs de chaleurs, mélangeurs…) qui leur sont associées. Les procédés de fabrication de ces équipements peuvent être une limite au développement d’appareillages plus complexes, pour atteindre des niveaux de compacité et d’efficacité supérieurs aux solutions existantes. Cet article a pour objectif de présenter et d’exemplifier les nouvelles opportunités offertes par la fabrication additive pour la conception et la réalisation d’équipements permettant l’intensification des procédés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jean-Marc COMMENGE : Professeur à l’Université de Lorraine - Laboratoire Réactions et Génie des Procédés, - Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France

  • Laurent FALK : Directeur de recherche CNRS - Laboratoire Réactions et Génie des Procédés, - Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France

  • Raphael FAURE : Responsable d’équipe Conception et Fabrication - Campus Innovation Paris, Air Liquide R&D, - 1 chemin de la Porte des Loges, 78354 Les Loges en Josas

  • Matthieu FLIN : Coordinateur de projet R&D - Campus Innovation Paris, Air Liquide R&D, - 1 chemin de la Porte des Loges, 78354 Les Loges en Josas

INTRODUCTION

L’intensification des procédés de transformation de la matière et de l’énergie est passée en moins de 20 ans de l’état de concept à la réalité industrielle. Telle que définie dans « European Roadmap for Process Intensification », l’intensification des procédés représente un ensemble de principes innovants souvent radicalement différents, dans la conception des procédés et des équipements. Les avantages significatifs concernent l'efficacité globale d’un procédé, caractérisée par une diminution des coûts opératoires et des coûts d’investissement, une réduction des rejets et une amélioration notable de la sécurité des procédés.

Depuis l’émergence du concept dans les années 1980, ces principes ont trouvé plusieurs applications dans les domaines de la pétrochimie où de la chimie fine et en particulier en chimie pharmaceutique. Au-delà des concepts théoriques permettant de mieux appréhender les phénomènes physico-chimiques mis en jeu, il est indispensable de disposer de solutions technologiques innovantes pour fabriquer les équipements intensifiés. Grâce aux nouvelles techniques de fabrication, il est possible de réaliser des équipements aux géométries et dimensions associées qui permettent une augmentation drastique des transferts de matière et de chaleur tout en offrant une compacité importante des équipements tels que réacteurs, échangeurs de chaleur, mélangeurs, séparateurs… qui sont les équipements clés des procédés industriels.

Du point de vue conceptuel, on peut imaginer et dimensionner tous types d’équipements performants. Mais la réalisation pratique, notamment l’usinage et l’assemblage des pièces constitutives, selon la nature des matériaux, peut présenter de nombreuses limitations ne permettant pas de réaliser techniquement ou économiquement des géométries complexes. S'il n’est pas possible de fabriquer un équipement compact avec une grande surface d’échange pour évacuer la chaleur dégagée par une réaction chimique, il est nécessaire d’adapter les conditions de réaction, par exemple par dilution, pour réaliser la synthèse dans le réacteur moins performant. On conçoit ainsi que les limitations d’usinage et de fabrication des équipements entraînent de fait une limitation du potentiel d’intensification de ces équipements. C’est notamment le cas de l’intensification par modification géométrique, présentée dans cet article.

Depuis une quinzaine d’années, la fabrication additive, ou impression 3D, offre de nouvelles opportunités pour la conception et la réalisation de ces équipements, en levant certains verrous propres aux méthodes traditionnelles de fabrication. Avec l’émergence de solutions de fabrication additive présentant des capacités et des productivités de fabrication augmentée, il est envisageable aujourd’hui de produire des équipements dont l’utilisation dans les procédés industriels peut être compétitive. La fabrication additive apparaît comme une technologie clé dans de nombreuses feuilles de route.

Cet article a pour objectif de présenter les avantages et les inconvénients de la fabrication additive pour l’intensification des procédés par modifications géométriques, d’expliquer comment la conception de tels équipements doit être revue et de détailler des exemples de réalisation pour la fabrication d’équipements, par fabrication additive, pouvant prétendre à l’intensification du procédé dans lequel ils sont utilisés. L’article aborde également les limitations actuelles à l’utilisation de ces nouveaux procédés de fabrication et les perspectives de développements envisagées pour les prochaines années. Cet article fait ainsi le lien entre deux grandes rubriques des éditions Techniques de l’Ingénieur, l’intensification des procédés et méthode d’analyse durable et les procédés de fabrication additive.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm7947


Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

6. Glossaire

Conception Assistée par Ordinateur CAO ; Computer Assisted Design CAD

La conception assistée par ordinateur comprend l'ensemble des logiciels et des techniques de modélisation géométrique permettant de concevoir des objets à l’aide d’un ordinateur.

Simulation informatique de dynamique des fluides ; Computational Fluid Dynamics CFD

La mécanique des fluides numériques étudie les mouvements d'un fluide, ou leur impact sur le milieu, par la résolution numérique des équations régissant le fluide.

Dépôt d'énergie directe ; Directe Energy Deposition DED

Procédé de FA permettant de fabriquer des objets par dépôt sous flux d’énergie concentrée – une énergie thermique focalisée est utilisée pour fusionner des matériaux en les fondant au fur et à mesure qu’ils sont déposés – par utilisation de matières premières sous différentes formes (fil, poudre).

Fabrication Additive FA ; Additive Manufacturing AM

Ensemble de procédés de fabrication capable de produire un objet par ajout de matière à partir d’un fichier numérique.

Laser-Beam Powder-Bed Fusion LB-PBF

Procédé de FA permettant de fabriquer des objets par fusion laser d’un lit de poudre métallique.

Vaporeformage ; Steam Reforming

Réaction endothermique entre des hydrocarbures (principalement le méthane) et de la vapeur d’eau pour former un gaz de synthèse (mélange de H2, CO, CO2 et CH4) riche en hydrogène.

Fabrication additive par procédé arc-fil ; Wire Arc Additive Manufacturing WAAM

Procédé de FA de type DED, utilisant un arc électrique pour générer la chaleur nécessaire à la fusion de la matière première sous forme de fil.

Apprentissage automatique ; Machine learning

Système informatique capable d'apprendre et de s'adapter sans instructions explicites, par l'utilisation d'algorithmes et de modèles statistiques, en analysant les données de son environnement.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Glossaire
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   *  -  European roadmap for process intensification, https://efce.info.

  • (2) - HORBEZ (D.) et al -   L’usine du futur pour l’industrie de procédés.  -  Livre blanc, SFGP (2019).

  • (3) -   *  -  Techniques de L’ingénieur, rubrique Intensification des procédés et méthodes d’analyse durables, [42493210].

  • (4) -   *  -  Techniques de L’ingénieur, rubrique Procédés de fabrication additive, [42633210].

  • (5) - COMMENGE (J.M.), FALK (L.) -   Reaction and Process System Analysis, Miniaturization and Intensification Strategies.  -  Chap. 2 dans Micro Process Engineering – A comprehensive Handbook, volume 3 : system, process and plant engineering, Ed. V. Hessel, A. Renken, J.C. Schouten et J. Yoshida, Wiley-VCH, Weinheim, Allemagne (2009).

  • (6)...

NORMES

  • Fabrication additive – Principes généraux – Partie 2 : Vue d'ensemble des catégories de procédés et des matières premières. - ISO 17296-2 :2015 -

  • Fabrication additive – Principes généraux – Partie 3 : Principales caractéristiques et méthodes d'essai correspondantes. - ISO 17296-3 :2014 -

  • Préparation des éprouvettes de matériaux thermoplastiques par des techniques sans moule – Partie 1 : Principes généraux, et frittage laser des éprouvettes. - ISO 27547-1 :2010 -

  • Fabrication additive – Principes généraux – Terminologie. - ISO/ASTM 52900 :2015 -

  • Fabrication additive – Principes généraux – Principes essentiels et vocabulaire. - ISO/ASTM DIS 52900 -

  • Fabrication additive – Principes généraux – Exigences pour l’achat de pièces. - ISO/ASTM 52901 :2017 -

  • Fabrication...

1 Annuaire

HAUT DE PAGE

1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

Add-Up, fabricant et distributeur de machines LB-PBF et DED-P, services de productions de pièces, services de formation

https://addupsolutions.com/fr

AFHS 3D (ancienne fonderie BOUTTE), production de moules sable par fabrication additive, pour procédés fonderie

https://www.afhs3d.fr

EOS, fabricant et distributeur de machines pour production de pièces en fabrication additive par fusion laser (métal, polymères)

https://www.eos.info/en

HIETA (UK), conception et fabrication d’équipements pour la fabrication additive (échangeurs de chaleur, turbomachines, brûleurs)

https://www.hieta.biz

Poly-Shape (Groupe Add-Up), production de pièces par LB-PBF et DED

https://www.poly-shape.com

SLM Solutions GmbH, fabrication de machines LB-PBF

https://www.slm-solutions.com

TEMISTH, conception d’échangeurs de chaleur innovants pour la fabrication additive

http://temisth.com

VOLUM-E, production...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS