Présentation
En anglaisRÉSUMÉ
Cet article cherche à démonter l’intérêt des techniques de simulation et d’optimisation en ordonnancement et conception, à travers deux applications, un atelier de production de protéines et un atelier industriel multiproduit de chimie fine. Dans le contexte actuel, la mise sur le marché d’un nouveau produit ne se fait qu’au prix de phases de recherche et développement coûteuses. Les outils de simulation et d’optimisation représentent un soutien efficace et précieux tout au long du cycle de vie de développement d’un produit.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Auteur(s)
-
Catherine AZZARO-PANTEL : Professeur à l’ENSIACET-INPTLaboratoire de Génie Chimique UMR CNRS 5503
-
Adrian DIETZ : Maître de Conférences à l’ENSIC-INPLLaboratoire des Sciences du Génie Chimique
-
Serge DOMENECH : Professeur à l’ENSIACET-INPTLaboratoire de Génie Chimique UMR CNRS 5503
-
Luc PIBOULEAU : Professeur à l’ENSIACET-INPTLaboratoire de Génie Chimique UMR CNRS 5503
INTRODUCTION
L’objectif de ce dossier est de montrer à travers deux exemples d’application tout l’intérêt des techniques de simulation et d’optimisation en ordonnancement et conception d’ateliers, dans un contexte où le développement et la commercialisation d’un nouveau produit impliquent des activités de recherche et développement complexes et coûteuses : ainsi, dans le domaine pharmaceutique, on peut mentionner des contraintes strictes liées à la nécessité d’établir les dossiers d’autorisation de mise sur le marché et l’abandon de très nombreux produits au cours du développement, après avoir subi des essais cliniques. Les outils de simulation et d’optimisation de procédés discontinus constituent donc une aide efficace tout au long du cycle de vie du développement du procédé, de la production et de la commercialisation du produit. Les cas d’études retenus concernent un atelier de production de protéines, qui sert de fil rouge pour les études en ordonnancement et conception ainsi qu’un atelier industriel multiproduit de chimie fine pour une application en remodelage.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Biomédical - Pharma > Médicaments et produits pharmaceutiques > Production des médicaments : industrialisation > Ordonnancement et conception d’ateliers. Applications > Conception d’ateliers
Accueil > Ressources documentaires > Génie industriel > Conception et Production > Méthodes de production > Ordonnancement et conception d’ateliers. Applications > Conception d’ateliers
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Conception d’ateliers
5.1 Contexte
Il s’agit d’un problème majeur dans lequel on recherche la configuration d’atelier et les conditions opératoires des différentes étapes visant le plus souvent à minimiser un coût d’investissement.
À titre d’illustration, la figure 9 regroupe les variables discrètes qui correspondent à la configuration de l’atelier : nombre d’équipements à chaque étape de traitement et taille des équipements (les volumes et surfaces ont été discrétisés en trois tailles : grande, moyenne et petite).
La figure 9 présente également l’ensemble des variables continues qui correspondent aux conditions opératoires et qui avaient été identifiées comme des variables ayant un impact majeur sur les critères de performance retenus (coût d’investissement et impact sur l’environnement) lors d’une étude préliminaire. Au total, il y a 18 variables continues et 26 variables discrètes, soit au total 44 variables.
La procédure d’optimisation utilisée est un algorithme génétique développé dans , auquel nous renvoyons le lecteur pour toute information complémentaire.
HAUT DE PAGE5.2 Données nécessaires à la conception
Un ensemble de données concernant la définition du problème d’optimisation doit être défini par l’utilisateur. La production souhaitée pour les quatre produits à élaborer figure dans le tableau 6. Les quantités à produire semblent a priori assez différentes, ce qui peut être problématique lors de l’implémentation de la politique...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conception d’ateliers
BIBLIOGRAPHIE
-
(1) - MONTAGNA (J. M.), VECCHIETTI (A. R.), IRIBARREN (O. A.), PINTO (J. M.), ASENJO (J. A.) - Optimal design of protein production plants with time and size factor process models. - Biotechnol. Prog., 16, 228-237 (2000).
-
(2) - DIETZ (A.), AZZARO-PANTEL (C.), PIBOULEAU (L.), DOMENECH (S.) - A Framework for Multiproduct Batch Plant Design with Environmental Consideration : Application To Protein Production. - Industrial Engineering and Chemistry Research, 44, p. 2191-2206 (2005).
-
(3) - BÉRARD (F.), AZZARO-PANTEL (C.), PIBOULEAU (L.), DOMENECH (S.), NAVARRE (D.), PANTEL (M.) - Towards an incremental development of discrete-event simulators for batch plants : use of object-oriented concepts. - Comm. Escape 9, Budapest, (Hongrie) 31 Mai – 2 Juin, 1999, Comp. And Chem. Eng. Supplements, p. S565-S568 (1999).
-
(4) - COLLETTE (Y.), SIARRY (P.) - Optimisation multiobjectif. - Eyrolles, ISBN : 2-212-11168-1.
-
(5) - BURGESS (A.), BRENNAN (D.) - Application of life cycle assessment to chemical processes. - Chemical Engineering Science, Volume 56/8, p. 2589-2604 (2001).
- ...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive