Présentation
RÉSUMÉ
Le présent article passe en revue les principes et les performances actuelles des procédés de production d'hydrogène par la voie microbiologique dite "sombre". Les techniques de conduite et de caractérisation de fermentation impliquant des cultures complexes sont plus particulièrement détaillées. Les dernières avancées de la recherche ainsi que les réalisations actuelles en termes de développement et de changement d’échelle sont également présentées. A ce stade des connaissances, quelques perspectives sont proposées, dont les différentes configurations possibles de systèmes multiétagés pour une valorisation optimale des matières organiques.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article reviews the main principles and latest achievements of hydrogen production in dark fermentation processes. The methods for characterizing and monitoring strict anaerobic fermentation processes are discussed, in particular with mixed cultures. The main achievements in both research and development for technical scale-up are also described. Future perspectives are finally considered, including the possibilities of multi-step systems for optimal conversion of organic materials.
Auteur(s)
-
Eric TRABLY : Ingénieur de recherche - Ingénieur de l’Institut national des sciences appliquées de Toulouse (INSA) - Docteur et habilitation à diriger des recherches en génie des procédés de l’université Montpellier II - Directeur adjoint au laboratoire de biotechnologies de l’environnement (UR050 – INRA-LBE Narbonne), Narbonne, France
-
Gwendoline CHRISTOPHE : Maître de conférences à Polytech Clermont-Ferrand – Institut Pascal – axe GePEB - Docteur en génie des procédés de l’université Blaise Pascal - Université Clermont Auvergne, LABEX ImobS3, Clermont-Ferrand, France
-
Eric LATRILLE : Ingénieur de recherche - Ingénieur de l’École centrale de Lyon - Docteur en génie des procédés de l’Institut national agronomique Paris-Grignon (INA P-G, AgroParisTech) - Laboratoire de biotechnologies de l’environnement (UR050 – INRA-LBE Narbonne), Narbonne, France
-
Christian LARROCHE : Professeur à Polytech Clermont-Ferrand - Ingénieur de l’Institut national des sciences appliquées de Toulouse (INSA) - Docteur d’état en génie des procédés de l’université Blaise Pascal (Clermont-Ferrand) - Institut Pascal – axe GePEB - Université Clermont Auvergne, LABEX ImobS3, Clermont-Ferrand, France
INTRODUCTION
La nature réactive de l’hydrogène fait que, dans le monde industriel, le dihydrogène (H2) est très largement utilisé comme réactif dans de nombreux procédés de chimie fine, de pétrochimie et en agroalimentaire. Dans un contexte actuel de transition énergétique, les applications de piles à combustible pour les transports sont en fort développement et font de l’H2 un vecteur énergétique d’intérêt. La production d’un hydrogène « vert », ou décarboné, constitue donc une filière d’avenir très prometteuse.
Or, dans le monde du vivant, l’hydrogène est un intermédiaire biochimique réactionnel omniprésent jouant un rôle majeur de vecteur d’électrons entre espèces microbiennes, notamment en conditions fermentaires. Or, la fermentation dite « sombre », par opposition aux photo-bioprocédés dépendants d’une source lumineuse, est un procédé orienté vers la production d’hydrogène qui n’est apparu que récemment dans le domaine des biotechnologies. Longtemps considérée comme un processus de dégradation de la matière organique peu désirable car générant des nuisances olfactives et des sous-produits avec un faible intérêt économique, à savoir acétate et butyrate, elle est devenue depuis peu particulièrement attrayante par sa production d’hydrogène. De plus, l’intérêt de produire de l’hydrogène par fermentation réside en l’utilisation d’une large gamme de substrats organiques qu’il s’agisse d’hydrates de carbone purs ou non, de déchets organiques ou autres résidus agricoles. L’hydrogène ainsi produit serait de l’hydrogène « biosourcé » (autrement dénommé biohydrogène).
D’un point de vue industriel, cette filière de production d’un hydrogène « vert » par fermentation n’a pas encore connu un réel essor, au regard d’un marché hydrogène encore émergent. Le développement de ce type de biotechnologie reste donc à ce jour au stade de l’échelle pilote. Ces procédés de production d’H2 présentent également encore certaines limites quant à leur industrialisation immédiate. En effet, même si les procédés actuels présentent de bonnes productivités (plusieurs dizaines de , les rendements moyens de conversion restent souvent inférieurs à 2 molH2.molhexose_equivalent –1 alors qu’une conversion totale permettrait d’atteindre un rendement théorique de 12 molH2.molhexose_equivalent –1, soit 1,6 m3 d’H2 par kilogramme de sucre équivalent. Ainsi, afin d’optimiser les rendements de la filière, des couplages avec d’autres procédés biologiques ou chimiques doivent être considérés, comme, par exemple, avec des procédés de photofermentation ou d’électrolyse microbienne. Cette démarche « intégrée » est indispensable au succès d’une filière « biohydrogène ». Certaines incompatibilités entre procédés restent néanmoins à être levées, via par exemple la présence de composés inhibiteurs. À court terme, les procédés fermentaires de production d’H2 paraissent pouvoir facilement s’intégrer aux filières de traitement/valorisation des déchets par méthanisation.
Cet article aborde dans un premier temps les aspects théoriques de la production d’hydrogène par voie fermentaire sombre. La deuxième partie est dédiée aux gisements de matière organique et à leur potentiel. La troisième partie est consacrée aux acteurs microbiens produisant de l’hydrogène, et une quatrième partie présente leurs mises en œuvre en procédés tant à l’échelle laboratoire qu’à l’échelle pilote. Enfin, les aspects de modélisation sont abordés.
MOTS-CLÉS
biohydrogène traitement des déchets voie fermentaire sombre bioénergies procédés anaérobies
KEYWORDS
biohydrogen | waste treatment | dark fermentation | bioenergy | anaerobic processes
VERSIONS
- Version archivée 1 de mai 2011 par Éric LATRILLE, Éric TRABLY, Christian LARROCHE
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Biotech industrielles pour la chimie et l’énergie > Production de biohydrogène - Voie fermentaire sombre > Les procédés de production de biohydrogène
Accueil > Ressources documentaires > Énergies > Hydrogène > Procédés de production de l'hydrogène > Production de biohydrogène - Voie fermentaire sombre > Les procédés de production de biohydrogène
Cet article fait partie de l’offre
Chimie verte
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Les procédés de production de biohydrogène
4.1 Mise en œuvre en bioprocédé du potentiel biologique de production en biohydrogène
4.1.1 Source et préparation des inocula : prétraitement des cultures
La majorité des inocula servant à la production d’hydrogène sont issus soit de procédés de méthanisation soit de milieux naturels anaérobies stricts. Ils contiennent donc une forte concentration en archées méthanogènes d’où la nécessité de les éliminer avant utilisation .
Les méthanogènes sont des archaebactéries anaérobies strictes et non sporulantes possédant des vitesses spécifiques de croissance inférieures à celles des micro-organismes producteurs d’hydrogène, avec des taux de croissance respectivement de 0,02 h–1 et 1 h–1. D’autre part les principales bactéries productrices d’hydrogène, telles que les clostridies, présentent des propriétés de sporulation lorsque leur environnement devient défavorable à leur croissance. Les différents prétraitements existants s’appuient donc sur ces caractéristiques pour éliminer les bactéries méthanogènes du milieu.
Les différents prétraitements possibles sont donc souvent basés sur la faculté à sporuler, comme l’utilisation d’un choc thermique, d’un choc pH acide ou basique, d’une aération brève, ou d’une alternance gel/dégel du milieu.
Le traitement thermique est la méthode la plus couramment utilisée, le traitement le plus classique étant de l’ordre de 90 °C durant 10 minutes. Suivant les études, la température peut varier entre 90...
Cet article fait partie de l’offre
Chimie verte
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Les procédés de production de biohydrogène
BIBLIOGRAPHIE
-
(1) - LI (C.), FANG (H. H.P.) - Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. - Crit Rev Environ Sci Technol. 37, pp. 1-39 (2007).
-
(2) - GUO (X.M.), TRABLY (E.), LATRILLE (E.) et al - Hydrogen production from agricultural waste by dark fermentation : A review. - Int J Hydrogen Energy, DOI : 10.1016/j.ijhydene.2010.03.008 (2010).
-
(3) - RODRIGUEZ (J.), KLEEREBEZEM (R.), LEMA (J.M.) et al - Modeling product formation in anaerobic mixed culture fermentations, - Biotechnol Bioeng, 93, pp. 592-606 (2006).
-
(4) - HAWKES (F.), HUSSY (I.), KYAZZE (G.) et al - Continuous dark fermentative hydrogen production by mesophilic microflora : principles and progress. - Int J Hydrogen Energy, 32, pp. 172-184 (2007).
-
(5) - THAUER (R.K.), JUNGERMANN (K.), DECKER (K.) - Energy Conservation in Chemotrophic Anaerobic Bacteria. - Bacteriol Rev, 41, pp. 100-180 (1977).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Aquasim 2.0. Swiss Federal Institute for Environmental Science and Technology (EAWAG). http://www.eawag.ch/organisation/abteilungen/siam/software/aquasim/program_description
SIMBA (ifak system) : simulation d’installations de traitement des eaux usées incluant les digesteurs de boues activées. http://www.ifak-system.com/products/simulation-software/wastewatersimulation/simba-6.html
HAUT DE PAGE• En France
Groupe de recherche sur le biohydrogène
Projet ANR Bioénergies 2008 INGECOH : Ingénierie écologique d’écosystèmes microbiens producteurs de biohydrogène par voie fermentaire
http://bip.cnrs-mrs.fr/bip10/ingecoh.htm
Projet ANR Bioénergies 2008 ANABIOH2 : Valorisation des coproduits agricoles et industriels...
Cet article fait partie de l’offre
Chimie verte
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive