Présentation
En anglaisRÉSUMÉ
De par leurs différentes propriétés, les exopolysaccharides bactériens (EPS) peuvent prétendre à des applications dans de nombreux secteurs industriels. Mais cette recherche d'EPS est le résultat d'une longue démarche incluant les étapes suivantes : i) constitution d'une collection de micro-organismes, ii) criblage, iii) production en laboratoire, iv) caractérisations physico-chimiques et biologiques et v) transfert à l'échelle industrielle. Ces différentes étapes sont décrites dans cet article avec tous les problèmes inhérents à chacune d'entre elles. La cosmétique fait partie de ces secteurs d'activité en constante demande de nouveaux biopolymères. Quelques EPS marins ont d'ores et déjà trouvé des applications auprès de différents acteurs de la cosmétologie.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Owing to their many interesting physical and chemical properties, bacterial exopolysaccharides (EPSs) have found applications in many industrial sectors. The search for novel exopolysaccharides involves several steps: (i) creation of a library, (ii) screening of EPS producers, (iii) production under laboratory conditions, (iv) physical and chemical and biological characterization, and (v) final scale-up to industrial level. Novel marine exopolysaccharides are of great interest in cosmetics and personal care products . Some marine EPS have already found applications in this industrial sector.
Auteur(s)
-
Anthony COURTOIS : Président, Polymaris Biotechnology, Morlaix, France
-
Jean GUEZENNEC : Consultant scientifique, AiMB (Advices in Marine Biotechnology), Plouzané, France
INTRODUCTION
Les polysaccharides peuvent être définis comme des macromolécules formées de l'enchaînement de motifs similaires, en l'occurrence de glucides appelés couramment « sucres » ou « oses ». Initialement dominé par les gommes d'origine végétale et algale, leur marché s'ouvre également aux polysaccharides bactériens. En milieu marin, cette production semble être majoritairement le fait de souches appartenant aux genres Alteromonas, Pseudoalteromonas, Pseudomonas, Shewanella et Vibrio. Chez les bactéries, ces polysaccharides sont présents :
-
au niveau de la paroi cellulaire ;
-
à l'extérieur de la cellule mais liés à celle-ci (polysaccharide capsulaire) ;
-
ou relargués dans le milieu de culture sous forme d'exopolysaccharides (EPS).
Ces EPS sont, dans la majorité des cas (à l'exception de cas connus comme les levanes et les dextranes), synthétisés à l'intérieur de la cellule bactérienne et excrétés dans le milieu sous forme de macromolécules. Même si l'on peut supposer que ce mode de synthèse se retrouve chez les bactéries marines, force est de constater qu'il n'existe que peu d'études sur le sujet.
Pour de multiples raisons, dont celles liées à leur mode d'obtention et d'extraction, les EPS constituent les biopolymères présentant un très grand intérêt d'un point de vue biotechnologique, et ce pour de nombreux secteurs industriels (santé, agro-alimentaire, cosmétique, environnement, récupération assistée des huiles, bioremédiation, etc.).
D'une manière générale, une stratégie de valorisation de ces EPS bactériens se construit selon une succession de différentes étapes : l'échantillonnage, la création d'une collection (« souchothèque ») et sa gestion, le criblage, la production en laboratoire et la détermination des caractéristiques et propriétés des biopolymères, leur développement (études d'optimisation, choix de stratégies...) et la production à l'échelle pré-industrielle et industrielle, cela avant une possible commercialisation. Cet article décrit ces différentes étapes et les problèmes pouvant y être associés avec, comme exemple d'applications pour ces biopolymères marins, le domaine de la cosmétique.
KEYWORDS
From sampling to biomolecule | bacterial exopolysaccharides
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Plastiques et composites > Plastiques et environnement > Obtention d'exopolysaccharides bactériens et applications en cosmétique > Conclusion
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Biotech industrielles pour la chimie et l’énergie > Obtention d'exopolysaccharides bactériens et applications en cosmétique > Conclusion
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Ressources marines et biotechnologies bleues > Obtention d'exopolysaccharides bactériens et applications en cosmétique > Conclusion
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Conclusion
La biodiversité marine est naturellement source de diversité de structures chimiques de métabolites issus de cette biodiversité. La composante microbienne est encore la moins connue et la moins étudiée mais probablement source potentielle de découvertes de nouvelles molécules dans les années à venir. Les exopolysaccharides bactériens d'origine marine font partie de ces molécules à fort potentiel biotechnologique, soit à l'état natif soit après modifications chimiques et surtout enzymatiques. Le fait de pouvoir également contrôler en amont cette production, via le génie génétique ou plus simplement par une connaissance des mécanismes de biosynthèse, constitue une voie d'avenir. Dans cette attente, le développement industriel de ces exopolysaccharides marins reste à ce jour relativement limité car il se heurte, comme d'autres EPS, à un problème majeur, leur coût de production, un coût qui doit être compatible selon les applications, avec les réalités économiques. À titre d'exemple le coût de production des principaux EPS marins commercialisés à ce jour peut dépasser les 500 à 1 000 euros/kg alors que celui du xanthane se situe, selon la qualité recherchée, aux alentours de 5 à 10 euros/kg. Les solutions à cette réduction des coûts de production passent par l'utilisation de substrats carbonés peu onéreux, comme les coproduits de l'industrie (alimentaire, énergie) et une simplification des procédés d'extraction et de purification en évitant, autant que faire se peut, l'utilisation de solvants organiques. Dans cette attente seuls les marchés de niche ou ceux de la santé, mais sous réserve d'une pureté et reproductibilité de polysaccharides natifs ou modifiés, semblent alors accessibles.
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - GUEZENNEC (J.), ORTEGA-MORALES (O.), RAGUENES (G.), GEESEY (G.) - Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents. - FEMS Microbiology Ecology, 26, p. 89-99 (1998).
-
(2) - ÖNER (E.T.) - Microbial production of extracellular polysaccharides from Biomass. - FANG (Z.) (ed.), Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology, 35, DOI 10.1007/978-3-642-32735-3-2, © Springer-Verlag Berlin Heidelberg (2013).
-
(3) - SENTHILKUMAR (V.), GUNASEKARAN (P.) - Influence of fermentation conditions on levan production by Zymomonas mobilis CT2. - Indian J. Biotechnol., 4, p. 491-496 (2005).
-
(4) - AROCKIASAMY (S.), BANIK (R.M.) - Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with non-ionic surfactants using central composite design. - J. Biosci. Bioeng., 105, p. 204-210 (2008).
-
(5) - CHRISTENSEN (B.E.), KJOSBAKKEN (J.), SMITHROD (O.) - Partial and chemical characterization of two extracellular polysaccharides produced by a marine, periphytic Pseudomonas strain NCMB 2021. - ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Polymaris Biotechnology, Morlaix, France http://www.polymaris.com
CODIF Recherche et Nature, St Malo, France http://www. codif-recherche-et-nature.com
Lucas Meyer, Québec, Canada http://www.lucasmeyer.com
Lipotec http://www.lipotec.com
Pacific Biotech SAS, Tahiti, Polynésie française http://www.pacific-biotech.pf
HAUT DE PAGECet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive