Présentation

Article

1 - ORIGINE DE LA LIGNINE

2 - LA LIGNINE : CARACTÉRISTIQUES ET MODES D’EXTRACTION

3 - VOIES DE VALORISATION DE LA LIGNINE

4 - ENZYMES LIGNOLYTIQUES

5 - CONCLUSION

6 - GLOSSAIRE

7 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : IN235 v1

Conclusion
Lignine : structure, production et valorisation chimique

Auteur(s) : Alex RAKOTOVELO, Frédéric PERUCH, Stéphane GRELIER

Date de publication : 10 avr. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La lignine est un biopolymère clé dans la structure des végétaux car elle constitue une barrière chimique pour protéger les autres polymères pariétaux. Cette résistance aux éléments biotiques et abiotiques explique la difficulté pour obtenir de la lignine à l’état natif ce qui a limité pendant longtemps sa valorisation matière au contraire de sa valorisation énergétique. Le développement de la bioraffinerie lignocellulosique va proposer un volume important de lignine dont la transformation en synthons de base comme les molécules phénoliques ou les matériaux devient critique pour consolider ces procédés. Dans cet article les voies de valorisation les plus prometteuses seront décrites.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Lignin : Structure, Production and Chemical Valorisation

Lignin is a key biopolymer in plant structure because it provides a chemical barrier to protect the other parietal polymers. This resistance to biotic and abiotic elements explains the difficulty of obtaining lignin in the native state, which for a long time has limited its material valorization and promoted the energy production. The development of the lignocellulosic biorefinery will provide a large volume of lignin whose transformation into basic synthons such as phenolic molecules or materials becomes critical to consolidate these processes. In this article, the most promising ways of valorization will be described.

Auteur(s)

  • Alex RAKOTOVELO : Docteur en chimie des polymères de l’université de Bordeaux - Laboratoire de Chimie des Polymères Organiques, UMR CNRS 5629 - École Nationale Supérieure de Chimie, de Biologie et de Physique de Bordeaux (ENSCBP), Pessac, France

  • Frédéric PERUCH : Docteur en chimie des polymères de l’université de Bordeaux - Laboratoire de Chimie des Polymères Organiques, UMR CNRS 5629 - École Nationale Supérieure de Chimie, de Biologie et de Physique de Bordeaux (ENSCBP), Pessac, France

  • Stéphane GRELIER : Professeur des universités - Docteur en chimie des polymères de l’université de Bordeaux - Laboratoire de Chimie des Polymères Organiques, UMR CNRS 5629 - École Nationale Supérieure de Chimie, de Biologie et de Physique de Bordeaux (ENSCBP), Pessac, France

INTRODUCTION

De tous les polymères naturels, la lignine est sûrement le plus emblématique du règne végétal. Sa biosynthèse ainsi que sa structure sont restées longtemps mal connues en raison de sa résistance aux agents chimiques et biologiques. Néanmoins, une intensification des recherches la concernant s’est opérée depuis le début du troisième millénaire afin d’améliorer les procédés papetiers et surtout de préparer la bioraffinerie qui devrait prendre l’ascendant sur la pétrochimie avant la fin duxxi e siècle. En effet, la conversion de la cellulose et des hémicelluloses en sucres simples (C5 et C6) pour la production de carburants ou de précurseurs pour la chimie est désormais maîtrisée et le déploiement industriel a commencé. Ainsi, alors que plusieurs millions de tonnes de lignine provenant de l’industrie papetière et des usines de bioéthanol pourraient être obtenues et exploitées chaque année (10 à 20 % de la lignine générée), seule une infime partie est actuellement valorisée. La meilleure connaissance de sa structure chimique a permis de proposer des procédés performants pour la séparer des polysaccharides. En parallèle, une adaptation de sa biosynthèse par les outils de la biotechnologie permettra également de proposer des végétaux mieux adaptés aux procédés industriels utilisés par la bioraffinerie et en accord avec les principes de la chimie durable. Cet article présente tout d’abord les principales caractéristiques de la lignine puis les différents procédés d’extraction à partir de la biomasse végétale. Les différentes voies de valorisation de la lignine sont décrites et discutées avec un focus particulier sur la voie enzymatique car cette dernière a l’avantage de répondre pleinement aux principes de la chimie verte.

Points clés

Domaine. Chimie de la biomasse

Degré de diffusion de la technologie.  Croissance

Domaines d’application. Bioraffinerie. Polymères biosourcés

Principaux acteurs français :

  • pôles de compétitivité : Xylofutur, IAR, AXELERA

  • centres de compétences : Université de Bordeaux, INP Grenoble, Université de Lorraine, FCBA

  • industriels : Rayonier AM, SMURFIT-KAPPA, TEMBEC

Autres acteurs dans le monde :

Tous les pays industrialisés ont plusieurs centres de compétences et le listing risque d’être long et incomplet. La chimie de la lignine qui est une partie de la chimie de la biomasse est déclinée à différents degrés dans un grand nombre de département de chimie et en particulier de chimie organique.

Pour les autres acteurs industriels on peut citer Solvay, Rayonier Advanced Materials.

Contact :

http://www.solvay.fr

http://rayonieram.com/fr/

http://fibre-excellence.fr

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

lignin   |   phenols   |   biorefinery   |   biomass deconstruction

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-in235


Cet article fait partie de l’offre

Chimie verte

(160 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

5. Conclusion

Cet article a mis en évidence les enjeux et les difficultés liés à la recherche d’une voie de valorisation efficace de la lignine. Malgré les nombreux efforts tournés vers cet objectif, elle reste le seul constituant de la biomasse lignocellulosique pour lequel quasiment aucun procédé industriel n’a pu être développé pour exploiter au mieux cette ressource au fort potentiel. Ainsi, la conversion de la cellulose et des hémicelluloses en sucres simples par hydrolyse permet la production de carburant et de molécules plateformes pour la chimie d’origine naturelle. Ces techniques sont actuellement appliquées dans des usines de capacité de production élevée.

La forte complexité de la lignine et son caractère hétérogène limitent pour l’instant son utilisation commerciale à des applications de faible valeur ajoutée, comme celle d’agent dispersant dans les ciments. La dépolymérisation de la lignine pour l’obtention de molécules aromatiques d’origine naturelle capables de remplacer leurs équivalents pétrosourcés semble être la voie de valorisation la plus prometteuse pour ce biopolymère. Il est clair que la mise au point de procédés de dépolymérisation de la lignine à grande échelle est indispensable pour le développement des bioraffineries de demain.

Parmi les nombreuses stratégies développées pour la dépolymérisation de la lignine, l’oxydation sélective des fonctions hydroxyles en position α suivie de la rupture de la liaison C-C oxydée est une des voies les plus prometteuses. Dans le meilleur des cas, jusqu’à 60 % de lignine ont pu être convertis en molécules de faibles masses molaires. Dans cette étude, un dérivé du TEMPO est utilisé pour l’étape d’oxydation sélective. Cette méthode n’a cependant été conduite qu’à l’échelle du laboratoire et la question de l’isolement des nombreux produits générés devra être traitée avant de pouvoir imaginer une application industrielle de cette technique prometteuse.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Chimie verte

(160 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CANDOLLE (A.-P.) -   Exposition des principes de la classification naturelle et de l’art de décrire et d’étudier les végétaux.  -  Paris : Deterville (1819).

  • (2) - SJÖSTRÖM (E.) -   Wood chemistry – Fundamentals and applications,  -  2nd ed. Academic Press, Inc. (1993).

  • (3) - PANSHIN (A.J.), de ZEEUW (C.) -   Textbook of wood technology,  -  2nd éd. McGraw-Hillbook Company (1964).

  • (4) - ADLER (E.) -   Lignin chemistry – past, present and future,  -  Wood Sci. Technol., vol. 11, no. 3, pp. 169-218 (1977).

  • (5) - VANHOLME (R.), DEMEDTS (B.), MORREEL (K.), RALPH (J.), BOERJAN (W.) -   Lignin Biosynthesis and Structure,  -  PLANT Physiol., vol. 153, no. 3, pp. 895-905, Jul. 2010.

  • (6) - HOLLADAY...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Chimie verte

(160 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS