Présentation
EnglishRÉSUMÉ
Ces dernières années, la fabrication de plastiques à partir de ressources renouvelables s’est avérée être un nouvel enjeu économique. Les biopolymères, dont le plus connu est la cellulose, sont des polymères issus d’organismes vivants ou de polymères synthétisés à partir de ressources renouvelables. Ces polymères connaissent depuis quelques années un réel essor du fait de leurs origines biologiques et surtout de leur caractère biodégradable. Leurs utilisations en substitution ou même en mélange à d’autres polymères synthétisés à partir d’hydrocarbures offrent donc des applications intéressantes.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Nathalie JARROUX : Maître de Conférences à l’Université d’Evry Val d’Essonne
INTRODUCTION
Ces dernières années, la fabrication de plastiques à partir de ressources renouvelables s’est avérée être un nouvel enjeu économique. Celui-ci est lié à la prise de conscience de l’impact des matériaux plastiques qui connaissent un réel essor mais dont le caractère polluant dû à un mauvais recyclage présente un risque pour notre planète. La chimie des polymères est née de la connaissance d’un biopolymère courant : la cellulose plus connue sous le nom de bois. En effet, la cellulose appartient à la famille des polysaccharides qui est une des familles de biopolymère. Les biopolymères sont donc des polymères issus exclusivement d’organismes vivants ou de polymères synthétisés à partir de ressources renouvelables . Ces polymères connaissent depuis quelques années un réel essor du fait de leurs origines biologiques et surtout de leur caractère biodégradable. Leurs utilisations en substitution ou même en mélange à d’autres polymères synthétisés à partir d’hydrocarbures offrent donc des applications intéressantes. En effet, dans un monde où les matériaux recyclables ou biodégradables prennent peu à peu plus de place, les biopolymères sont de plus en plus valorisés.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Plastiques et composites > Plastiques et environnement > Les biopolymères : différentes familles, propriétés et applications > Principales applications de ces biopolymères
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Matériaux biosourcés > Les biopolymères : différentes familles, propriétés et applications > Principales applications de ces biopolymères
Accueil > Ressources documentaires > Génie industriel > Métier : responsable bureau d’étude/conception > Éco-conception : mise en œuvre et applications > Les biopolymères : différentes familles, propriétés et applications > Principales applications de ces biopolymères
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Biotech industrielles pour la chimie et l’énergie > Les biopolymères : différentes familles, propriétés et applications > Principales applications de ces biopolymères
Accueil > Ressources documentaires > Innovation > Éco-conception et innovation responsable > Éco-conception : mise en œuvre et applications > Les biopolymères : différentes familles, propriétés et applications > Principales applications de ces biopolymères
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Principales applications de ces biopolymères
Les biopolymères ont de plus en plus d'applications industrielles (tableau 2 dues à une tendance dans l'industrie à substituer les polymères dérivés du pétrole dont la réserve n'est pas inépuisable par des composés biodégradables. On les appelle alors des bioplastiques . Pourtant, cette idée n'est pas nouvelle puisque dès 1930, Ford avait fait appel à des protéines de soja pour produire des pièces intérieures de voiture puis des pièces de carrosserie. Mais, aujourd'hui, un nouvel élan est donné aux bioplastiques du fait des difficultés liées au recyclage de nos déchets toujours plus nombreux, à la nécessité de valoriser les sous produits agricoles et aux soucis d'approvisionnements pétroliers de plus en plus coûteux.
Les premières applications des biopolymères ont été développées dans les domaines pharmaceutique et agroalimentaire mais, à ce jour, ces polymères tendent même à remplacer des composites dans des secteurs extrêmement variés (sport, transport…).
Les applications des biopolymères reposent donc sur leur principale propriété qui consiste en leur caractère biodégradable. Comme le montre la figure 20, l'avantage des plastiques dégradables réside dans la disparition de la matière au cours du temps. Dans des conditions déterminées par des normes (NF EN 13432) et (NF U 52-001), les bioplastiques ne laissent aucun fragment qui pourrait polluer la planète.
Le terme biodégradable a d'abord été employé à tort, dans les années 1980, pour des matériaux plastiques issus de la pétrochimie rendus fragmentables par ajout d'un additif peroxydant (photodégradable) ou d'une charge biodégradable : l'amidon (fragment biodégradable), dans le but de résoudre le problème des déchets engendrés par les matières plastiques et de leur pollution....
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Principales applications de ces biopolymères
BIBLIOGRAPHIE
-
(1) - WYART (D.) - Les polymères biodégradables - [AM 3 579] Plastiques et composites 10-2007.
-
(2) - LEFEVRE (O.), BINET (A.) - Biological Molecules - (Les biomolécules), Masson, 238 p., 1996.
-
(3) - CHANDRA (R.), RUSTGI (R.) - Biodegradable Polymers. - Prog. Polym. Sci., 23, 1273-1335, 1998.
-
(4) - * - http://www.theses.ulaval.ca/2003/21360/21360002.png
-
(5) - * - http://www.unige.ch/…/pharm/fagal/fig3of-these.JPG
-
(6) - * - http://gfev.univ-tln.fr/AcAmin/ACIDAMINES.htm
-
(7) - * - http://www.azaquar.com/…/ca_images/ca_proteine4.gif
- ...
NORMES
-
Emballage - Exigences relatives aux emballages valorisables par compostage et biodégradation - Programme d’essai et critères d’évaluation de l’acceptation finale - NF EN 13432 - Novembre 2000
-
Matériaux biodégradables pour l’agriculture et l’horticulture - Produits de paillage - Exigences et méthodes d’essai des emballages - NF U52-001 - Février 2005
ADEME http://www.ademe.fr
Club « Bioplastiques » http://www.european-bioplastics.org/php/id=371
University of Natural Resources and Applied Life Sciences Vienna, Department for Agrobiotechnology IFA - Tulln Institute for Natural Materials Technology http://www.ifa-tulln.ac.at
HAUT DE PAGEHAUT DE PAGE
HAUT DE PAGE
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive