Présentation

Article interactif

1 - DIFFÉRENTES CLASSES DE CATALYSEURS ET LEURS CARACTÉRISATIONS PHYSICO-CHIMIQUES

2 - SÉLECTION ET MISE EN ŒUVRE APPROPRIÉE DE LA RÉACTION MODÈLE

3 - PRINCIPALES RÉACTIONS POUR CARACTÉRISER LES CATALYSEURS ACIDES

4 - PRINCIPALES RÉACTIONS POUR CARACTÉRISER LES CATALYSEURS BASIQUES

5 - PRINCIPALES RÉACTIONS POUR CARACTÉRISER LES CATALYSEURS MÉTALLIQUES

6 - PRINCIPALES RÉACTIONS POUR CARACTÉRISER LES CATALYSEURS SULFURES

7 - CONCLUSION

8 - GLOSSAIRE

Article de référence | Réf : J1275 v1

Glossaire
Caractérisation des catalyseurs hétérogènes par réactions modèles

Auteur(s) : Guillaume CLET, Laetitia OLIVIERO, Ludovic PINARD

Relu et validé le 24 janv. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les réactions modèles permettent de caractériser les catalyseurs hétérogènes en conditions opératoires. Leur utilisation, basée sur l’étude des paramètres catalytiques (conversion, sélectivité, désactivation), permet d’accéder aux caractéristiques des sites actifs : nature (acide, base, acido-basique, redox), force, densité, environnement et à leur effet sur la vitesse de réaction. La mise en œuvre et l'apport des réactions modèles, comparativement à des méthodes de caractérisation physico-chimiques, sont discutés de façon critique dans cet article pour les catalyseurs acides, basiques, métalliques ou sulfures.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Characterization of heterogeneous catalysts through model reactions

Model reactions are used for characterizing heterogeneous catalysts under operating conditions. Their application, based on the analysis of catalytic parameters (conversion, selectivity, deactivation), allows access to the characteristics of the active sites: nature (acid, base, acid-base, redox), strength, density, environment, and their effect on the reaction rate. The implementation and contribution of model reactions in comparison to physico-chemical characterization methods, is critically discussed in this article for acid, base, metal, or sulfide catalysts.

Auteur(s)

  • Guillaume CLET : Maître de conférences - Normandie Université, ENSICAEN, Université de Caen Normandie, CNRS, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France

  • Laetitia OLIVIERO : Maître de conférences - Normandie Université, ENSICAEN, Université de Caen Normandie, CNRS, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France

  • Ludovic PINARD : Maître de conférences, Membre du Groupe Français des Zéolithes - Université de Poitiers, Institut de Chimie et Matériaux de Poitiers (IC2MP), 86073 Poitiers, France

INTRODUCTION

La catalyse est omniprésente dans nos sociétés technologiques. On estime que plus de 95 % des molécules synthétisées ont vu au moins une fois un catalyseur homogène ou hétérogène. Les catalyseurs, et notamment les solides (catalyse hétérogène), sont fondamentaux pour permettre par exemple la fabrication sélective de très nombreux intermédiaires ou produits chimiques dans les meilleures conditions, ainsi que pour dépolluer les rejets d’usine ou les gaz d’échappement. Ainsi, la catalyse hétérogène, avec la biocatalyse dans une moindre mesure, apparaît comme la clé de voûte de la transition énergétique et de la résolution de nombreux enjeux environnementaux de nos sociétés. Ce domaine pluridisciplinaire, à la fois passionnant d’un point de vue scientifique et économique, implique des connaissances sur les matériaux catalytiques, allant de leur préparation à leur caractérisation (en particulier celle de leur surface), en passant par la compréhension des réactions (cinétique et mécanismes), sans oublier l’optimisation de leur mise en œuvre.

Les méthodes physico-chimiques sont fréquemment utilisées pour caractériser les catalyseurs hétérogènes. Cependant, les conditions opératoires d’analyse inhérentes à chaque technique de caractérisation sont souvent éloignées de celles des réactions catalytiques : par exemple, l’information obtenue pour un catalyseur étudié sous vide est-elle suffisante pour comprendre les propriétés d’un catalyseur qui opère en réaction sous pression ? Cet écart n'existe pas ou est limité lorsque l’on caractérise le catalyseur grâce à des réactions modèles qui sont effectuées dans des conditions se rapprochant des conditions industrielles. En se basant sur une connaissance approfondie de leur mécanisme et/ou des intermédiaires et produits de réaction, l’utilisation de réactions modèles permet d’étudier, dans les conditions de fonctionnement proches de l’application, les caractéristiques des sites actifs : nature (acide, base, acido-basique, redox), force, densité, environnement et leur effet sur la vitesse de réaction. Parallèlement, les propriétés texturales comme la surface externe, les volumes microporeux et mésoporeux, la taille et la forme des cristaux, etc., restent quasi exclusivement accessibles via des méthodes d’analyse ex-situ.

Cet article vise donc à répertorier l’apport des réactions modèles dans la caractérisation des grandes familles de catalyseurs hétérogènes, tels que les oxydes (SiO2-Al2O3, Al2O3, MgO, etc.), les zéolithes, les métaux supportés et les catalyseurs sulfures. Une attention particulière sera portée sur les conditions de la mise en œuvre de cette technique de caractérisation afin d’obtenir des données d'activité et de sélectivité exploitables. Les réactions adaptées à chacune de ces grandes familles de catalyseurs étant indépendantes, le lecteur pourra ainsi à sa guise se limiter à la famille de catalyseurs qui l’intéresse plus spécifiquement.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

acid catalyst   |   base catalyst   |   metal catalyst   |   sulfide catalyst   |   catalytic active site   |   catalytic selectivity

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-j1275


Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

8. Glossaire

Craquage ; cracking

En pétrochimie, thermolyse du pétrole et de ses dérivés liquides. L'opération consiste à casser une molécule organique complexe en éléments plus petits, notamment des alcanes, des alcènes, des aldéhydes et des cétones.

Dispersion ; dispersion

Rapport entre le nombre d'atomes de surface et le nombre total d'atomes. C'est un nombre sans unité, souvent exprimé en %.

Dismutation ; dismutation

Réaction chimique dans laquelle une espèce réagit avec elle-même, et se trouve après la réaction sous la forme de deux espèces.

Hydrogénation ; hydrogenation

Réaction chimique qui consiste en l'addition d'une molécule de dihydrogène (H2) à un autre composé. Cette réaction est habituellement employée pour réduire ou saturer des composés organiques.

Ion carbénium ; carbenium ion

Carbocation dont l'atome de carbone qui porte la charge électrique est trivalent, ce qui lui donne une configuration plane trigonale résultant d'une hybridation sp.

Ion carbonium ; carbonium ion

Carbocation dont l'atome de carbone portant la charge électrique, est tétra- ou pentacoordonné.

Hydrogénolyse ; hydrogenalysis

Réaction chimique par laquelle une liaison covalente carbone-carbone ou carbone-hétéroatome est décomposée ou subit une lyse par action d'hydrogène.

Principe de Sabatier ; Sabatier principle

Concept qualitatif en catalyse chimique hétérogène du nom du chimiste français Paul Sabatier qui déclare que les interactions entre le catalyseur et le substrat doivent être « parfaites », c'est-à-dire ni trop fortes ni trop faibles.

Temps de contact ; contact time

Caractéristique importante d'un réacteur ouvert en mode continu en génie chimique qui indique le temps théorique que passent les réactifs ou produits dans le lit catalytique. La définition mathématique est donnée en divisant le volume du lit catalytique par le débit volumique.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Glossaire
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - TOPSØE (H.), CLAUSEN (B.S.), MASSOTH (F.E) -   Hydrotreating Catalysis. In Catalysis : Science and Technology.  -  Anderson, J. R., Boudart, M., Eds. ; Catalysis-Science and Technology ; Springer : Berlin, Heidelberg (1996).

  • (2) - NINH (T.K.T.), MASSIN (L.), LAURENTI (D.), VRINAT (M.) -   A New Approach in the Evaluation of the Support Effect for NiMo Hydrodesulfurization Catalysts.  -  Applied Catalysis A : General, 407 (1), p. 29-39 (2011).

  • (3) - KASZTELAN (S.), TOULHOAT (H.), GRIMBLOT (J.), BONNELLE (J.P.) -   A Geometrical Model of the Active Phase of Hydrotreating Catalysts.  -  Applied Catalysis 13 (1), p. 127-159 (1984).

  • (4) - GUISNET (M.), PINARD (L.) -   Characterization of Acid-Base Catalysts through Model Reactions.  -  Catalysis Reviews 60 (3), p. 337-436 (2018).

  • (5) - LERCHER (J.A.), JENTYS (A.), BRAIT (A.) -   Catalytic Test Reactions for Probing the Acidity and Basicity of Zeolites.  -  In Acidity and Basicity ; Molecular Sieves ;...

1 À lire également

HAUT DE PAGE

1.1 Dans nos bases

BARBILLAT (J.), BOUGEARD (D.), BUNTINX (G.), DELHAYE (M.), DHAMELINCOURT (P.) et FILLAUX (F.). – Spectrométrie Raman. [P 2 865] (1999).

BROLL (N.). – Caractérisation de solides cristallisés par diffraction X. [P 1 080] (1996).

CAZAUX (J.). – Spectroscopie Auger – Principes et performances en sonde fixe. [P 2 620] (2007).

DESPUJOLS (J.). – Spectrométrie d’émission des rayons X. Fluorescence X. [P 2 695] (2000).

DI BENEDETTO (D.), BREUIL (P.). – Spectrophotométrie d'absorption dans l'ultraviolet et le visible. [P 2 795] (2019).

FONTAINE (A.). – Spectroscopie d’absorption X (EXAFS et XANES) Application du rayonnement synchrotron. [P 2 698] (1989).

FRAYRET (J.), MERMET (J.-M.), PAUCOT (H.). – ICP-OES : couplage plasma induit par haute fréquence – spectrométrie optique. [P 2 719] (2012).

GUISNET (M.), PINARD (L.). – Catalyse hétérogène : désactivation et régénération des catalyseurs. [J 1 265] (2014).

GUISNET (M.). – Catalyse acido-basique. [J 1 210]...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS