Présentation

Article

1 - CONCEPTS ET ENJEUX DE L’INGÉNIERIE MÉTABOLIQUE ET DE LA BIOLOGIE DE SYNTHÈSE

2 - GRANDS SUCCÈS DE L’INGÉNIERIE MÉTABOLIQUE

  • 2.1 - Ingénierie métabolique et biocarburants
  • 2.2 - Ingénierie métabolique et produits pharmaceutiques
  • 2.3 - Ingénierie métabolique et substitution des commodités fossiles

3 - CONCEPTION RATIONNELLE ET BIOLOGIE DE SYNTHÈSE

  • 3.1 - Apport de l’informatique en ingénierie du vivant
  • 3.2 - Conception rationnelle de voies métaboliques
  • 3.3 - Modélisation de flux et optimisation des souches

4 - DE L’ÉPROUVETTE AU FERMENTEUR INDUSTRIEL

  • 4.1 - Substitution de produits pétrochimiques par des alternatives renouvelables
  • 4.2 - Quelques concepts permettant de faciliter le changement d’échelle
  • 4.3 - Quelques astuces de conception pour des rendements optimaux
  • 4.4 - Passage au fermenteur industriel
  • 4.5 - Confinement et sécurité génétique

5 - CONCLUSION

Article de référence | Réf : BIO800 v2

Grands succès de l’ingénierie métabolique
Ingénierie métabolique et biologie de synthèse pour la chimie verte

Auteur(s) : Cyrille PAUTHENIER, Jean-Loup FAULON

Date de publication : 10 févr. 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

L’urgence écologique et l’épuisement des ressources naturelles obligent l’industrie chimique à repenser son mode de production. Depuis les années 1990, l’ingénierie métabolique vise à concevoir « à la carte » des micro-organismes capables de produire par fermentation le composé chimique voulu à partir de ressources renouvelables. Cet article traite des différents concepts,  enjeux et de l’état de l’art de la discipline. Il sera aussi question des nouvelles directions prises par la biologie de synthèse et son impact sur l’avenir des biotechnologies industrielles.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Cyrille PAUTHENIER : Président et directeur scientifique - Abolis Biotechnologies, SAS, Évry, France

  • Jean-Loup FAULON : Directeur de recherche INRA - Micalis, Jouy-en-Josas, France

INTRODUCTION

Depuis le XIXe siècle, nos sociétés se sont développées sur la base d’une industrie florissante et sont devenues dépendantes de produits et d’énergies en provenance de sources non renouvelables. Du fait de la dégradation de l’environnement et de l’épuisement prochain d’un grand nombre de ressources naturelles, il est nécessaire de repenser nos modes de production et de consommation, à l’économie d’abord, puis de substituer aux besoins indispensables une production alternative propre et durable.

L’identification de souches naturelles a permis le développement des premiers procédés de fermentation industrielle au milieu du XXe siècle avec la production d’antibiotiques, d’acides aminés et de quelques acides organiques. Mais, depuis les années 1980, les progrès de l’ingénierie du vivant ont permis de franchir une étape supplémentaire avec l’ambition de construire des organismes « à la carte », capables de produire par fermentation le composé voulu à partir de ressources issues de la biomasse végétale. C’est l’objectif d’un champ de recherche appelé « ingénierie métabolique ». À ce jour, la fermentation de plus de 130 composés différents a été étudiée dans de multiples organismes afin de couvrir les besoins en carburants, plastiques et autres molécules de l’agriculture, de la chimie et de la médecine (voir l’article [BIO801] des Techniques de l’ingénieur).

Contraindre un micro-organisme à fabriquer un composé chimique est loin d’être une tâche aisée. Il est possible d’en produire de faibles quantités, mais obtenir un rendement économiquement viable est très dépendant de la source de carbone choisie, de l’échelle de production et de la méthode de séparation utilisée. Dans cet article, nous présentons un panel d’outils et de méthodes utilisables pour concevoir un organisme et augmenter de manière significative ses rendements en utilisant des approches de biologie de synthèse.

Nous pensons que les technologies issues de l’ingénierie métabolique et de la biologie de synthèse sont bientôt prêtes à sortir du monde académique et à être expérimentées plus largement à l’échelle industrielle, comme le montrent un certain nombre de succès industriels récents. Nous discuterons aussi du rôle des acteurs académiques et des entreprises, ainsi que des phases de développement et des astuces pour passer du laboratoire au fermenteur de production.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-bio800


Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Grands succès de l’ingénierie métabolique

2.1 Ingénierie métabolique et biocarburants

HAUT DE PAGE

2.1.1 Carburant éthanol

La première et certainement la plus développée des applications de l’ingénierie métabolique est la production de biocarburants. L’utilisation et l’amélioration de souches naturellement productrices d’éthanol comme S. cerevisiae, C. acetobutylicum ou Z. mobilis, ou bien légèrement modifiées sont au cœur du développement des carburants de première génération.

L’utilisation de l’éthanol comme seul carburant pose plusieurs difficultés techniques. Premièrement, sa densité énergétique est de seulement 2/3 d’un carburant traditionnel. De plus, il est très agressif pour les moteurs et ses fortes qualités hygroscopiques obligent à le conserver continuellement à l’abri de l’humidité. Enfin, les souches suscitées utilisent comme source ce carbone primaire des sucres qui entrent en compétition avec l’alimentation humaine et animale.

À ce jour l’éthanol est principalement utilisé en mélange avec de l’essence traditionnelle en Europe, aux États-Unis avec des mélanges contenant de 10 à 85 % d’éthanol. Seul le Brésil possède une flotte de véhicules importante roulant 100 % à l’éthanol. En Europe, le prix de l’alcool a pendant un long moment été maintenu plus bas que l’essence par une politique volontariste de détaxation afin de stimuler la croissance de la filière. Cette politique a cependant été revue à la baisse en France ces dernières années, ce qui compromet la rentabilité industrielle des installations actuelles. En tout état de cause, il sera difficile de dépasser 20 à 30 % d’incorporation systématique d’éthanol dans les carburants, car les capacités maximales de production agricole en Europe sont d’ores et déjà pratiquement atteintes.

HAUT DE PAGE

2.1.2 Butanol et alcools branchés : la génération intermédiaire

De...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Grands succès de l’ingénierie métabolique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ANASTAS (P.), WARNER (J.C.) -   Green chemistry.  -  US Environmental Protection Agency. http://www.epa.gov/greenchemistry/

  • (2) -   Production of acetone and alcohol by bacteriological processes.  -  U.S. Patent US1315585(1919).

  • (3) - UNITED STATE DEPARTMENT OF AGRICULTURE -   U.S. Biobased Products : Market Potential and Projections Through.  -  http://usda.gov/oce/reports/energy/BiobasedReport2008.pdf (2025).

  • (4) - ERICKSON (B.), NELSON, WINTERS (P.) -   Perspective on opportunities in industrial biotechnology in renewable chemicals.  -  Biotechnology journal, vol. 7, no. 2, pp. 176-85 (2012).

  • (5) - XUE (C.), ZHAO (J.), LU (C.), YANG (S.T.), et al -   High-titer n-butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping.  -  Biotechnology and bioengineering, vol. 109, no. 11, pp. 2746-56 (2012).

  • ...

1 Normes et standards

CEN Produits bio-sourcés (Travaux du TC 411), EN 16575, 2014.

CEN Carburants liquides et gazeux, lubrifiants et autres produits liés au pétrole, de synthèse ou d’origine biologique (Travaux du TC19), en cours.

HAUT DE PAGE

2 Réglementation

En Europe

Directive n° 2009/41/CE du 6 mai 2009 relative à l’utilisation confinée de micro-organismes génétiquement modifiés

En France

Décret n° 2011-1177 du 23 septembre 2011 relatif à l’utilisation confinée d’organismes génétiquement modifiés (version consolidée du 26 septembre 2011)

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS