Présentation
EnglishRÉSUMÉ
Le Système international d'unités (SI) qui a été adopté par la Conférence générale des poids et mesures en 1960 est l'aboutissement de plusieurs dizaines d'années de recherche fructueuses dans l'établissement d'un système logique d'unités de mesures. Le SI a été conçu afin que, en principe, chaque mesure d'une grandeur physique ou chimique puisse être exprimée par un nombre associé à une unité spécifique. Toute grandeur peut être exprimée par une combinaison de sept unités de base connues comme les unités de base du SI. Les définitions de ces sept unités de base sont présentées avec une courte description de la manière dont elles sont réalisées en pratique. De plus le cas particulier des unités pour les rayonnements ionisants est présenté ainsi que le principe des chaînes d'étalonnage.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Maguelonne CHAMBON : Directrice de la recherche scientifique et technologique, LNE, Paris, France
-
Bruno CHAUVENET : i.p., ancien responsable du LNE-LNHB/CEA, Gif sur Yvette, France
-
Richard DAVIS : i.p., ancien responsable du département des masses, BIPM, Sèvres, France
-
Jimmy DUBARD : Responsable de département photonique, LNE-LCM, Trappes, France
-
Françoise LE FRIOUS : Chargée de programme R&D, LNE, Trappes, France
-
Mohamed SADLI : Responsable du pôle de métrologie thermique au LNE-LCM/CNAM, Saint-Denis, France
-
Sophie VASLIN-REIMANN : Responsable du pôle chimie-biologie, LNE, Paris, France
-
Jean-Pierre WALLERAND : Chercheur au LNE-LCM/CNAM, Paris, France
INTRODUCTION
En métrologie, un étalon réalise la définition d’une grandeur pour une valeur déterminée dans un système cohérent d’unités et avec une incertitude de mesure associée. Il peut être un système de mesure, une mesure matérialisée ou un matériau de référence. L’étalon sert de référence pour l’obtention des valeurs mesurées et des incertitudes de mesure. Il permet de contrôler l’exactitude des résultats donnés par un appareil de mesure ou d’étalonner l’appareil. L’exactitude d’un résultat de mesure est l’étroitesse de l’accord entre la valeur mesurée et la valeur vraie de la grandeur mesurée.
La valeur d’un étalon primaire est obtenue sans se référer à un étalon d’une grandeur de même nature mais il peut se référer à des étalons d’autres grandeurs. Par exemple, une balance de pression, étalon primaire pour la pression, peut être traçable au mètre, par des mesures de surfaces mais pas par rapport à un autre étalon de pression.
Les origines du Système international d’unités (SI) remontent au XVIIIe siècle, avec la création du système métrique décimal qui donna une première base d’uniformisation des unités de mesure. Avec les évolutions scientifiques et technologiques, particulièrement à la fin du XIXe siècle et tout au long du XXe, un nombre important de chercheurs ont essayé de définir les unités de mesure à partir de constantes physiques de la nature, par essence plus universelles que celles issues de réalisations pratiques (comme le point triple de l’eau) ou d’artefacts matériels (tel que le prototype international du kilogramme étalon).
Cependant, même si la précision des unités ne cessait de s’améliorer, dans le cadre du SI, certaines définitions d’unités restaient difficilement réalisables voire impossibles à mettre en œuvre (l’ampère par exemple).
Tous ces éléments ont conduit la communauté des métrologues à réfléchir à de nouvelles définitions des unités de mesure, fondées sur des constantes physiques. Entre 1967 et 1983, trois unités (la seconde, la candela et le mètre) ont été redéfinies par rapport à une constante physique. Puis, d’autres travaux de recherche menés sur plusieurs décennies à travers le monde ont permis cette nouvelle « révolution » de 2018, où le kilogramme, l’ampère, le kelvin et la mole se basent désormais également sur des constantes physiques de la nature. Ainsi les sept unités de base du SI ont été transformées, ouvrant de nouvelles perspectives pour accompagner les progrès technologiques. Après les évolutions du SI et sa dernière édition de 2018, l’article présente les principaux étalons primaires de mesure réalisés pour les grandeurs physiques et chimiques, en suivant l’ordre de définition des unités de base du SI.
VERSIONS
- Version archivée 1 de janv. 1990 par Pierre GIACOMO
- Version archivée 2 de mars 2015 par Terry QUINN, Luc ERARD, Yves HERMIER, Jimmy DUBARD, Bruno CHAUVENET, Georges FAVRE, Richard DAVIS, Philip TUCKEY, Jean-Pierre WALLERAND
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Génie industriel > Métier : responsable qualité > Organisation et vocabulaire de la métrologie > Étalons métrologiques fondamentaux > Température
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Température
La grandeur de base pour le domaine des grandeurs thermiques est la température, précisément la température thermodynamique. L’unité de base du SI est le kelvin (symbole K), retenue pour exprimer les valeurs de température thermodynamique.
6.1 Définition du kelvin : changement de paradigme
Le kelvin est l’une des quatre unités dont la définition a changé lors de la 26e Conférence générale des poids et mesures en novembre 2018. À cette occasion le système international d’unités a connu une révision majeure qui permet désormais de lier les principales unités de mesure aux constantes fondamentales de la nature. Le kelvin est désormais défini en relation avec une valeur fixe de la constante de Boltzmann comme suit :
Le kelvin, K, est l’unité thermodynamique de température ; sa valeur est définie en fixant la valeur numérique de la constante de Boltzmann à exactement 1,380 649 × 10–23 lorsqu’elle est exprimée en J·K−1, unité égale à kg·m2·s−2·K−1, le kilogramme, le mètre et la seconde étant définis en fonction de h, c et Δν Cs.
En d’autres termes, le kelvin est égal au changement de la température thermodynamique résultant d’un changement de l’énergie thermique kT de 1,380 649 × 10−23 J.
Remarque : Il est très courant d’appeler la différence T – 273,15 K la température en degré Celsius, souvent écrite t. L’unité de la température en degré Celsius, °C, est par définition égale en intensité au kelvin.
Pendant soixante-dix ans (1948-2018), le kelvin a été défini comme « la fraction 1/273,16 de la température thermodynamique du point triple de l’eau pure ». Cette définition a été...
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Température
BIBLIOGRAPHIE
-
(1) - - - CR 17e CGPM p. 97 (1983).
-
(2) - EVENSON (K.M.), WELLS (J.S.), PETERSEN (F.R.), DANIELSON (B.L.), DAY (G.W.) - Appl. Phys. - Lett., 22, 192 (1973).
-
(3) - JONES (D.J.), DIDDAMS (S.A.), RANKA (J.K.), STENTZ (A.), WINDELER (R.S.), HALL (J.L.), CUNDIFF (S.T.) - - Science, 288, 635 (2000).
-
(4) - - - CR 1re CGPM, p. 38 (1889).
-
(5) - - - CR 7e CGPM, p. 49 (1927).
-
(6) - Travaux et Mémoires du Bureau International des Poids et Mesures - 11 237 p. (1895).
-
(7)...
DANS NOS BASES DOCUMENTAIRES
-
Refroidissement des atomes – Horloges et senseurs inertiels.
-
Stabilité temporelle et fréquentielle des oscillateurs : outils d’analyse.
-
Génération d’impulsions lasers utltracourtes jusqu’à la fentoseconde.
Documents du BIPM :
BIPM, Valeurs recommandées de fréquences étalons
http://www.bipm.org/fr/publications/mep.html
BIPM, Recommendation S 2 (CCDS, 1970) Definition of TAI
http://www.bipm.org/en/committees/cc/cctf/ccds-1970.html
BIPM, FTP server of the Time Department
http://www.bipm.org/en/scientific/tai/ftp_server/publication.html
Ce site donne accès à la Circulaire T et à des informations complémentaires concernant UTC, ainsi qu’au résultats de UTCr, et à TT (BIPM) (ftp://tai.bipm.org/TFG/TT%28BIPM%29/).
BIPM, L’Arrangement de reconnaissance mutuelle (CIPM MRA)
http://www.bipm.org/fr/cipm-mra/
BIPM, Le système international d’unités – 9e édition. Annexe 2 – Réalisation pratique des principales unités
https://www.bipm.org/fr/publications/si-brochure
AutresLNE-SYRTE, Références Nationales de Temps, http://syrte.obspm.fr/tfc/temps/rnt.php. Donne des informations sur les références nationales, y compris le Bulletin H
http://syrte.obspm.fr/tfc/temps/outgoing_data/laboTAF/bulH/liste_bulh.php
Observatoire...
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive