Présentation

Article

1 - CARTOGRAPHIER L’AIMANTATION À L’ÉCHELLE NANOMÉTRIQUE

2 - CENTRE NV DU DIAMANT

3 - INTÉGRATION DU CAPTEUR DANS UN MICROSCOPE À BALAYAGE

4 - DIFFÉRENTS MODES DE MESURE

5 - INTERPRÉTATION DES CARTES DE CHAMP DE FUITE

6 - MODE AVANCÉ : LA GRADIOMÉTRIE

7 - CONCLUSION

8 - GLOSSAIRE

9 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : R6803 v1

Interprétation des cartes de champ de fuite
La magnétométrie à balayage de défaut azote-lacune et ses applications en nanomagnétisme

Auteur(s) : Aurore FINCO

Date de publication : 10 oct. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article présente la magnétométrie à balayage de défaut azote-lacune, une technique qui permet l’imagerie quantitative et non perturbatrice de configurations d’aimantation complexes à l’échelle nanométrique afin, notamment, d’étudier des matériaux d’intérêt pour la spintronique. Elle repose sur l’utilisation d’un capteur quantique, le défaut azote-lacune du diamant, intégré dans un microscope à force atomique.

Après une description expérimentale précise du magnétomètre, les différents modes de mesure, ainsi que leurs applications et leurs limitations, sont introduits. L’interprétation des cartes obtenues est également discutée afin de donner un aperçu complet des possibilités offertes par cette technique d’imagerie.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Scanning nitrogen vacancy center magnetometry and its applications in nanomagnetism

This article presents scanning nitrogen vacancy center magnetometry, an experimental technique allowing quantitative and non-perturbative imaging of complex nanoscale magnetic configurations, and used for example to study materials which are relevant for spintronics applications. This technique relies on a quantum sensor, the nitrogen vacancy center in diamond, which is integrated at the apex of the tip of an atomic force microscope.

After a detailed experimental description of the magnetometer, the different measurement modes will be in- troduced, together with their applications and limitations. The analysis of the obtained maps is also discussed, in order to give a complete overview of the possiblities offered by this imaging technique

Auteur(s)

  • Aurore FINCO : Chargée de recherche CNRS - Laboratoire Charles Coulomb, université de Montpellier, CNRS, Montpellier, France

INTRODUCTION

La spintronique propose d’utiliser non seulement la charge des électrons mais aussi leur spin afin de mettre au point des capteurs et des dispositifs de traitement et de stockage de l’information efficaces et peu énergivores. Née à la fin des années 1980 avec la découverte de la magnétorésistance géante, elle se développe désormais dans de nombreuses directions, avec par exemple l’utilisation de textures magnétiques non colinéaires, comme les parois de domaines ou les skyrmions, de matériaux antiferromagnétiques ou bidimensionnels de Van der Waals, ou encore d’ondes de spin (on parle alors de magnonique) pour stocker, transmettre et traiter l’information.

Ces développements ont accru le besoin pour des techniques d’imagerie magnétique performantes, capables de détecter et de caractériser quantitativement tous ces objets magnétiques à l’échelle nanométrique. Parmi les techniques disponibles, les microscopies à sonde locale possèdent l’avantage d’offrir une résolution spatiale allant de quelques dizaines de nanomètres jusqu’à la résolution atomique tout en étant suffisamment compactes pour être utilisées au laboratoire.

Cet article présente en détail l’une d’entre elles, la magnétométrie à balayage de centre NV, qui repose sur l’utilisation du défaut azote-lacune du diamant (le centre NV, pour Nitrogen-Vacancy) comme capteur quantique afin de mesurer le champ magnétique de fuite généré par des textures magnétiques. Cette mesure est fondée sur la détection optique de l’effet Zeeman qui décale les niveaux d’énergie du spin du centre NV en présence de champ magnétique et elle permet de répondre à des questions cruciales en spintronique, telles que déterminer la structure interne de parois de domaines, observer et mesurer l’aimantation dans des matériaux bidimensionnels ou réaliser des images de textures antiferromagnétiques.

Cet article débute par une discussion sur les conditions d’utilisation et la comparaison de plusieurs techniques d’imagerie magnétique à sonde locale dont la magnétométrie NV, puis un aperçu des principaux objets nanomagnétiques étudiés grâce à elles. La suite fournit une description complète des propriétés du centre NV qui permettent de l’utiliser en tant que capteur non perturbateur et très sensible de champ magnétique. La façon d’intégrer ce capteur dans un magnétomètre constitué d’un microscope à force atomique couplé à un microscope confocal est également détaillée, en insistant sur la nécessaire procédure d’étalonnage des pointes utilisées. La versatilité de cette technique est illustrée par la présentation des différents modes d’imagerie de la magnétométrie NV, de leur régime d’utilisation, ainsi que de leur mise en œuvre. Les différentes procédures d’analyse des données expérimentales sont également exposées, afin de proposer une vue globale de toutes les étapes d’une utilisation rigoureuse de la magnétométrie NV. Pour terminer, des développements récents permettant une amélioration substantielle de la sensibilité magnétique sont discutés, ouvrant la porte à la mesure de signaux magnétiques toujours plus faibles.

Au-delà de la magnétométrie, les protocoles expérimentaux présentés ici permettent également de détecter d’autres grandeurs physiques tels que la température, la pression ou le champ électrique, faisant du microscope NV un outil polyvalent pour l’étude de la matière condensée.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

spintronics   |   nitrogen vacancy center   |   magnetometry   |   scanning probe microscopy   |   nanomagnetism   |   quantitative imaging

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r6803


Cet article fait partie de l’offre

Mesures mécaniques et dimensionnelles

(120 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

5. Interprétation des cartes de champ de fuite

Une fois la cartographie quantitative du champ magnétique de fuite produit par l’échantillon obtenue, l’étape suivante est d’en extraire des informations au sujet de la texture magnétique étudiée. L’obstacle principal à contourner est qu’il n’existe pas de correspondance bijective entre la configuration d’aimantation et la distribution de champ magnétique qu’elle produit.

Deux configurations d’aimantation différentes peuvent produire la même carte de champ. En conséquence, deux approches sont possibles : soit on dispose d’un modèle précis de la texture magnétique, qu’on utilise pour calculer la carte de champ de fuite attendue et la comparer aux données expérimentales, soit on essaie tout de même d’inverser la relation entre B et M , au prix d’hypothèses fortes sur la distribution d’aimantation.

5.1 À partir d’un modèle de la texture magnétique

HAUT DE PAGE

5.1.1 Approche analytique

Lorsqu’on étudie un objet magnétique simple, comme le bord d’une zone ferromagnétique, une paroi entre deux domaines aimantés perpendiculairement à la surface ou encore une spirale de spin parfaitement sinusoïdale, il est possible de décrire l’état magnétique à l’aide d’une expression analytique. Dans certains cas, on peut calculer analytiquement le champ de fuite produit par cette texture magnétique et ajuster directement les données expérimentales au profil de champ attendu. On fixe les paramètres d NV , θ NV et ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures mécaniques et dimensionnelles

(120 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Interprétation des cartes de champ de fuite
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - KAZAKOVA (O.) et al -   Frontiers of Magnetic Force Microscopy.  -  Dans Journal of Applied Physics 125.6, p. 060901. doi: 10.1063/1.5050712. (2019).

  • (2) - HU (X.) et al -   Round Robin Comparison on Quantitative Nanometer Scale Magnetic Field Measurements by Magnetic Force Microscopy.  -  Dans Journal of Magnetism and Magnetic Materials 511, p. 166947. doi: 10.1016/j.jmmm.2020.166947. (2020).

  • (3) - WIESENDANGER (R.) -   Spin Mapping at the Nanoscale and Atomic Scale.  -  Dans Reviews of Modern Physics 81.4, pp. 1495-1550. doi: 10.1103/RevModPhys.81.1495. (2009).

  • (4) - HANNEKEN (C.) et al -   Electrical Detection of Magnetic Skyrmions by Tunnelling Non-Collinear Magnetoresistance.  -  Dans Nature Nanotechnology 10.12, pp. 1039-1042. doi: 10.1038/nnano.2015.218. (2015).

  • (5) - CHERNOBROD (B.), BERMAN (G.P.) -   Spin Microscope Based on Optically Detected Magnetic Resonance.  -  Dans Journal of Applied Physics 97.1, p. 014903. doi: 10.1063/1.1829373. (2004).

  • ...

ANNEXES

  1. 1 Annuaire

    1 Annuaire

    Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

    Magnétomètres NV et pointes en diamant

    Qnami

    https://qnami.ch/

    Qzabre

    https://qzabre.com/

    HAUT DE PAGE

    Cet article est réservé aux abonnés.
    Il vous reste 92% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Mesures mécaniques et dimensionnelles

    (120 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS