Présentation

Article

1 - RAPPELS SUR LES PARAMÈTRES S

2 - PROBLÈME DU DISPOSITIF NON LINÉAIRE

3 - LINÉARISATION SPECTRALE

  • 3.1 - Modélisation
  • 3.2 - Cas d’un stimulus fort signal unique

4 - MESURE ET INSTRUMENTATION

5 - CONCLUSION

Article de référence | Réf : R689 v1

Rappels sur les paramètres S
Paramètres S fort signal - Caractérisation de dispositifs non linéaires

Auteur(s) : Djamel ALLAL

Date de publication : 10 déc. 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Cet article traite de la caractérisation des dispositifs radiofréquences et micro-ondes ayant un comportement non linéaire en développant un modèle qui est une extension des paramètres S utilisés traditionnellement pour la caractérisation de dispositifs linéaires. L’approche s’appuie sur le concept de linéarisation spectrale qui est un outil permettant de simplifier le problème en réduisant le nombre de composantes fort signal à considérer et à linéariser la carte spectrale autour du point de fonctionnement tout en garantissant une description fidèle du comportement du dispositif, en caractérisant toutes les interactions entre les ports du dispositif et entre toutes les fréquences d’intérêt.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Djamel ALLAL : Ingénieur chercheur - Laboratoire national de métrologie et d’essais, Trappes, France

INTRODUCTION

La conception de circuits et systèmes radiofréquences et micro-ondes dans le domaine fréquentiel s’appuie sur des modèles de dispositifs linéaires et non linéaires. Concernant les dispositifs linéaires, ils peuvent être facilement caractérisés par un analyseur de réseau vectoriel en termes de paramètres S utilisés comme grandeur d’entrée des logiciels de simulation. Le principe de superposition est appliqué et permet alors d’établir les relations linéaires qui existent entre les ondes entrantes et sortantes à tous les ports du dispositif ou du système.

Les dispositifs non linéaires comme les transistors ou les amplificateurs fonctionnant en régime fort signal, quant à eux, ne peuvent pas être décrits par les paramètres S car le principe de superposition ne s’applique pas dans ce cas. Cependant, si on détermine les conditions de fonctionnement qui définissent les caractéristiques non linéaires des dispositifs, les équations non linéaires qui traduisent ce comportement et la méthode d’extraction des paramètres à utiliser dans ces équations, on peut utiliser les données mesurées directement, comme c’est le cas pour les paramètres S et les dispositifs linéaires.

L’idée est de généraliser la définition des paramètres S pour permettre la caractérisation de dispositifs ayant un comportement non linéaire. Trois familles principales de concepts ont ainsi été développées et commercialisées sous les appellations « X-parameters », « S-functions » et « Cardiff model ». Ces modèles sont tous basés sur la linéarisation de la réponse non linéaire autour d’une seule composante harmonique du signal d’entrée, par défaut la composante fondamentale d’entrée, de grande amplitude (fort signal). Le comportement non linéaire est ensuite analysé dans le domaine fréquentiel en mesurant les réponses aux ondes incidentes de faible amplitude (petit signal) correspondant aux fréquences harmoniques de la fondamentale, appliquées en plus de la fondamentale fort signal.

Nota

X-parameters est une marque déposée de Keysight Technologies.

Dans cet article, la formulation des paramètres X est retenue pour des raisons objectives telles que la riche bibliographie et la possibilité de les mesurer avec un analyseur de réseau classique doté simplement d’une option ad hoc (analyseur de réseau vectoriel non linéaire) et de générer des fichiers directement exploitables avec des logiciels de simulation compatibles.

En première partie, nous faisons un rappel sur les paramètres S, conventionnels et incontournables dans la conception, la réalisation et la caractérisation des dispositifs radiofréquences et micro-ondes. Nous mettons également en avant leurs limitations qui amènent au développement d’un nouveau concept permettant d’appréhender la mesure de dispositifs non linéaires.

En deuxième partie, nous posons le problème du dispositif non linéaire ou du dispositif à comportement non linéaire. Ce comportement apparaît par exemple quand le dispositif est soumis à un signal de grande amplitude ou fort signal.

En troisième partie, nous présentons le principe de la linéarisation spectrale qui est l’outil clé qui a permis de simplifier le problème de l’analyse et la caractérisation d’un dispositif à comportement non linéaire.

En quatrième partie, nous abordons les techniques de mesure et l’instrumentation. Nous montrons comment s’effectue l’étalonnage des instruments de mesure et la nécessité de disposer d’une référence de phase pour un étalonnage complet.

Notons finalement que cet article n’a pas la prétention d’être exhaustif. Il se limite à la présentation du concept en le développant dans un cadre général uniquement, en faisant ressortir la puissance de l’outil quand il s’agit de caractériser des dispositifs à comportement non linéaire. L’application de l’outil à différents cas pratiques représentatifs tels que l’aide à la conception d’un amplificateur, l’adaptation en entrée et en sortie, la réponse à différentes configurations de signaux d’excitation et la prise en compte des effets de mémoire pourra faire l’objet d’un article complémentaire.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r689


Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Rappels sur les paramètres S

Les paramètres S (de l’anglais Scattering parameters), coefficients de répartition ou de dispersion, sont sans conteste l’un des outils les plus importants pour la conception, la réalisation et la caractérisation des dispositifs micro-ondes. Les paramètres S peuvent être mesurés simplement à l’aide d’un analyseur de réseau vectoriel (ARV). Quand ce dernier est rigoureusement étalonné, les paramètres S mesurés représentent les propriétés intrinsèques du dispositif, indépendantes de l’ARV qui a servi à sa caractérisation. En effet, grâce aux procédures d’étalonnage, il est possible d’éliminer les erreurs systématiques dues à l’ARV et d’extraire l’ensemble des paramètres qui déterminent le comportement du dispositif, tels que le gain, les pertes, le facteur de réflexion, indépendamment du système de mesure.

1.1 Propriétés et limitations

Une propriété importante des paramètres S d’un dispositif est qu’il est possible de les déterminer à partir de la connaissance des paramètres S des différents éléments, composants, circuits et interconnexions qui constituent ledit dispositif. Les paramètres S sont une description complète du dispositif linéaire au niveau de ses différents ports, indépendamment de la nature de ses constituants et de leurs interactions. Finalement, les paramètres S sont des données obtenues par la mesure et/ou la modélisation qui peuvent être partagées entre les fabricants de composants et les intégrateurs de systèmes.

Les paramètres S traduisent la relation qui existe entre les ondes progressives incidentes (entrantes) sur l’un des ports d’un dispositif donné et celles qui sont réfléchies et/ou transmises (sortantes) par ce dernier, comme montré sur la figure 1.

Ces ondes, respectivement A et B, sont généralement décrites par les équations suivantes, comme une combinaison linéaire des tension et courant :

{ A= V+ Z ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Rappels sur les paramètres S
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ROOT (D.E.), VERSPECHT (J.), HORN (J.), MARCU (M.) -   X-Parameters – Characterization, Modeling, and Design of Nonlinear RF and Microwave Components.  -  Cambridge University Press (2013).

  • (2) - ROLAIN (Y.), VANDERSTEEN (G.), SCHOUKENS (M.) -   Modern RF and Microwave Measurement Techniques.  -  Édité par Valeria Tippati, Andrea Ferrero et Mohamed Sayed, Chapitre 12, Vector network analysis for nonlinear systems, Cambridge University Press (2013).

  • (3) - VERSPECHT (J.) -   Calibration of a Measurement System for High Frequency Nonlinear Devices.  -  Thèse, Vrije Universiteit Brussel, novembre 1995.

  • (4) - VERBEYST (F.) -   Contributions to Large-Signal Network Analysis.  -  Thèse, Vrije Universiteit Brussel, septembre 2006.

  • (5) - MACRAIGNE (F.) -   Développement d’un système de mesure temporel d’enveloppe de dispositifs non linéaires microondes.  -  Thèse, université de Limoges, décembre 2005.

  • ...

DANS NOS BASES DOCUMENTAIRES

1 Sites Internet

The OpenWave Forum (OWF) : http://www.openwaveforum.org/ (page consultée le 26 juin 2017)

HAUT DE PAGE

2 Brevets

Method for generating a circuit model, US 7295961 B2, 13 novembre 2007

HAUT DE PAGE

3 Annuaire

Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

Keysight Technologies :

http://www.keysight.com

Maury Microwave :

https://www.maurymw.com/MW_RF/

NMDG :

http://www.nmdg.be

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS