Présentation
EnglishRÉSUMÉ
La tomographie aux rayons X donne accès de manière non destructive à une visualisation en 3D avec une résolution de l’ordre du micromètre de la distribution des phases dans un échantillon. Le couplage de la technique avec une sollicitation du matériau étudié permet de caractériser finement les interactions entre sollicitation et structure interne. Dans cet article, les différents éléments nécessaires à la tomographie aux rayons X sont présentés, puis quelques exemples d’apport de la tomographie in situ à des problématiques de science des matériaux sont décrits.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Eric MAIRE : Directeur de recherche du CNRS, Université de Lyon, - Laboratoire de Matériaux – Ingénierie et Sciences (MATEIS) – UMR CNRS 5510, INSA Lyon, Villeurbanne, France
-
Pierre LHUISSIER : Chargé de recherche du CNRS, - Laboratoire de Science et Ingénierie des Matériaux et de Procédés (SIMaP) – UMR CNRS 5266, Université Grenoble Alpes, Saint-Martin-d’Hères, France
-
Luc SALVO : Professeur des Universités de Grenoble INP, - Laboratoire de Science et Ingénierie des Matériaux et de Procédés (SIMaP) – UMR CNRS 5266, Université Grenoble Alpes, Saint-Martin-d’Hères, France
INTRODUCTION
La tomographie aux rayons X consiste, grâce à la combinaison de nombreuses radiographies prises sous des angles différents, en la reconstruction en trois dimensions de la distribution du coefficient d’absorption des rayons X. Ainsi, cette technique permet de générer un volume numérique de la distribution des différentes phases (au sens de leur composition chimique) présentes dans l’échantillon observé.
Dans le cadre de la science des matériaux, la tomographie permet de caractériser en 3D, avec une résolution spatiale de l’ordre du micromètre, la distribution, la morphologie (forme, taille…) et la topologie (connectivité, percolation…) des phases présentes. L’utilisation de cette technique simultanément à une sollicitation (thermique, mécanique, hydrique…) du matériau, que l’on nomme caractérisation in situ, donne accès à l’évolution de ces paramètres au cours de la sollicitation.
La richesse de l’information contenue dans ces images 3D, ainsi que l’aspect non destructif de la technique, font de la tomographie une méthode de caractérisation de choix dans un certain nombre de problématiques en science des matériaux. La tomographie in situ a, par exemple, fait ses preuves pour la caractérisation de l’endommagement, aussi bien pour des conditions de sollicitations à température ambiante qu’à chaud, ou pour le suivi de transformation de phases.
La tomographie aux rayons X est décrite dans ses grands principes dans l’article [P 950]. Le présent article présente les développements liés à l’utilisation du rayonnement synchrotron, qui ont permis des avancées notables récentes dans le domaine de la science des matériaux notamment. Certaines de ces avancées sont prises à titre d’exemples et décrites brièvement, les lecteurs intéressés pourront se rapporter aux publications citées.
MOTS-CLÉS
science des matériaux tomographie rayons X tomographie aux rayons X essais in situ endommagement solidification
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Étude et propriétés des métaux > Méthodes de caractérisation et d'analyse des métaux et alliages > Tomographie aux rayons X synchrotron appliquée à la science des matériaux > Exemples de problèmes matériaux traités
Cet article fait partie de l’offre
Contrôle non destructif
(52 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Exemples de problèmes matériaux traités
La technique a été appliquée à de nombreux problèmes en science des matériaux. Nous en décrivons certains en précisant ce qu’apporte le caractère 3D de l’imagerie dans les différents cas.
2.1 Détection et quantification de l’endommagement à froid en vue de la prédiction de la rupture des matériaux
2.1.1 Endommagement sous chargement mécanique monotone
La rupture finale macroscopique d’un matériau, que doit être capable de prédire un ingénieur, est précédée de phénomènes microscopiques communément désignés sous le terme d’endommagement. Il s’agit d’amorçage, de croissance et de coalescence de microfissures ou de microcavités. L’étude et l’observation de ces différentes phases de l’endommagement permet une meilleure prédiction de la rupture. Il est crucial d’observer l’endommagement en 3D, car le champ de contraintes qui donne naissance aux microfissures est complètement différent en surface et à cœur. Le processus de préparation de la surface peut également induire des artefacts très gênants dans le cadre de telles observations. Les petits trous susceptibles d’être présents dans les alliages métalliques risquent par exemple d’être bouchés au polissage.
HAUT DE PAGE2.1.2 Visualisation avec des performances de routine
De manière routinière, des essais de traction en tomographie synchrotron peuvent aujourd’hui se pratiquer avec une résolution d'un micromètre et une vitesse d’acquisition d'un scan toutes les 5 minutes.
Des travaux précédents ont rapporté les informations initiales obtenues sur des matériaux modèles grâce à l’utilisation d’essais in situ en tomographie, qui ont principalement montré que l’endommagement était très différent quantitativement à cœur comparé à la surface des matériaux ...
Cet article fait partie de l’offre
Contrôle non destructif
(52 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Exemples de problèmes matériaux traités
BIBLIOGRAPHIE
-
(1) - FELDKAMP (L.A.), DAVIS (L.C.), KRESS (J.W.) - Practical cone-beam algorithm. - J. Opt. Soc. Am., 1, n° 6, 612-619 (1984).
-
(2) - CLOETENS (P.), LUDWIG (W.), GUIGAY (J.P.), BARUCHEL (J.), SCHLENKER (M.), VAN DYCK (D.) - Phase contrast tomography. - In : X-ray tomography in materials science. Baruchel, Buffière, Maire, Merle et Peix (éd.), p. 115-125, Hermès (2000).
-
(3) - CLOETENS (P.), PATEYRON-SALOME (M.), BUFFIERE (J.-Y.), PEIX (G.), BARUCHEL (J.), PEYRIN (F.), SCHLENKER (M.) - Observation of microstructure and damage in materials by phase sensitive radiography and tomography. - J. Appl. Phys., 81, 9 (1997).
-
(4) - PAGANIN (D.), MAYO (S.C.), GUREYEV (T.E.), MILLER (P.R.), WILKINS (S.W.) - Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. - Journal of Microscopy, 206 : 33-40 (2002).
-
(5) - BELTRAN (M.A.), PAGANIN (D.M.), UESUGI (K.), KITCHEN (M.J.) - 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance. - Opt. Express 18,...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Logiciel avizo 3D
HAUT DE PAGE
Conférence 3DMS organisé par TMS
HAUT DE PAGE2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
RX Solutions fabricant français de tomographes
HAUT DE PAGECet article fait partie de l’offre
Contrôle non destructif
(52 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive