Présentation
RÉSUMÉ
Les méthodes séparatives sont utilisées par les industries pétrolières, chimiques, métallurgiques, pharmaceutiques, cosmétiques, agricoles ou alimentaires, pour obtenir de grandes quantités de produits purs. Les méthodes de tamisage, filtration, précipitation et distillation mises en œuvre sont rapidement décrites. L'article est orienté vers les méthodes séparatives à but analytique: les chromatographies en phase liquide, gaz ou CO2 supercritique, et les méthodes électrophorétiques. Les principes, les possibilités, et les variations de chaque méthode sont décrits. Des exemples illustrent le propos et le matériel moderne nécessaire à leur exécution est présenté.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Alain BERTHOD : Professeur agrégé, directeur de recherche CNRS émérite - Institut des Sciences Analytiques, Université de Lyon 1, CNRS, Villeurbanne, France
INTRODUCTION
L’eau de pluie est l’un des éléments naturels qui est le plus proche d’un corps chimiquement pur : elle provient de l’évaporation, et est composée au-dessus des océans à plus de 99,99 % d’eau, H2O. Au-dessus des terres, et surtout des zones habitées, l’eau pure, excellent solvant, se charge en polluants anthropogènes et en bactéries. Au point que l’eau de pluie collectée en citerne de récupération de descente de toit ne doit pas avoir d’usage alimentaire.
Ainsi, l’immense majorité des composés trouvés dans la nature sont des mélanges. Les méthodes de séparation sont critiques en chimie pour obtenir des composés purs.
Des méthodes de séparation sont utilisées pour obtenir de grandes quantités de produits purs. Par exemple, la métallurgie extrait le métal désiré d’un minerai qui en contient peu ; ou l’industrie pétrochimique produit, à partir des pétroles bruts, les tonnes de différents carburants nécessaires aux différents véhicules modernes. L’industrie chimique produit une grande variété de composés, en quantités allant du milligramme (principe actif pharmaceutique) aux milliers de tonnes (carburants, engrais, plastiques, détergents), avec des procédés qui utilisent des méthodes de séparation à très grande échelle. Ces méthodes sont brièvement listées dans cet article.
D’autres méthodes de séparation ont pour but de détecter d’infimes quantités d’un composé particulier dans différentes matrices : ce sol, cet aliment, cet air, est-il contaminé ? Ce sportif a-t-il pris un composé pour se doper ? La composition du produit de cette compagnie respecte-t-elle le brevet déposé par cette autre compagnie ? De l’arsenic a-t-il été administré à Napoléon pour hâter son décès ? Les réponses à ces questions font appel à des méthodes séparatives avancées pour des mélanges complexes. Ces méthodes font l’objet de la majeure partie de cet article.
L’anglais étant accepté internationalement comme langue de la science, les sigles anglais des techniques décrites sont le plus souvent utilisés en français. C’est le cas dans cet article.
MOTS-CLÉS
Chromatographie liquide Chromatographie en phase gazeuse Chromatographie en phase supercritique méthodes électrophorétiques
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Méthodes séparatives avancées
Si l’obtention du produit désiré est possible par l’utilisation de méthodes simples, ce sont toujours celles-ci qui seront utilisées. Mais la séparation des constituants d’un mélange complexe est rarement possible uniquement avec les méthodes simples. Aussi, au fil du temps, les chimistes analystes ont-ils développé des méthodes de plus en plus efficaces pour isoler la molécule désirée d’un mélange complexe. Les méthodes de séparation avancées présentées comprennent les méthodes chromatographiques et les méthodes électrophorétiques. La tendance moderne est de faire plus vite et mieux sans impacter l’environnement. Cette tendance a poussé à miniaturiser tous les systèmes de séparation avancés.
2.1 Chromatographies
Les méthodes chromatographiques sont capables de séparer les composants d’un mélange par échanges successifs entre deux phases. L’une des phases est immobile ou stationnaire sur un support solide, dans la plupart des cas une colonne, et l’autre phase se déplace sur la phase stationnaire : c’est la phase mobile. Un mélange de composés introduit dans la phase mobile est mis en contact avec la phase stationnaire. Les composés du mélange, les solutés, se déplacent avec la phase mobile. Si un composé a de l’affinité pour la phase stationnaire, il s’y dépose, et est donc retenu par rapport aux autres solutés : il y a séparation.
Ce dépôt par adsorption, absorption ou partition entre phases mobile et stationnaire, est réversible. Lorsque de la phase mobile pure arrive, le soluté se re-dissout et se remet donc à avancer. Les composés ayant des affinités différentes pour la phase stationnaire, ils avancent à des vitesses différentes, et sortent de la colonne successivement. Celui qui n’a pas d’affinité pour la phase stationnaire sort le premier et celui qui se colle sur la phase...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Méthodes séparatives avancées
BIBLIOGRAPHIE
-
(1) - REICHARDT (C.) - Solvatochromic Dyes as Solvent Polarity Indicators. - Chem. Rev., 94(8), p. 2319-2358 (1994). doi:10.1021/cr00032a005
-
(2) - HELLINGHAUSEN (G.) - Development, evaluation, and application of chromatographic resolution enhancement strategies. - PhD, Université du Texas à Arlington, USA (2020). https://rc.library.uta.edu/uta-ir/handle/10106/28840
-
(3) - PATEL (D.C.), WAHAB (M.F.), O’HAVER (T.C.), ARMSTRONG (D.C.) - Separations at the speed of sensors. - Anal. Chem., 90(5), p. 3349-3356 (2018). https://doi.org/10.1021/acs.analchem.7b04944
-
(4) - JAMES (A.T.), MARTIN (A.J.P.) - Gas-liquid partition chromatography : A technique for the analysis of volatile materials. - Analyst, 77, p. 915-932 (1952).
-
(5) - BREITBACH (Z.S.), WEATHERLY (C.A.), WOODS (R.M.), VALE (G.), BERTHOD (A.), ARMSTRONG (D.W.) - Development and evaluation of gas and liquid chromatographic methods for the analysis of fatty amines. - J. Sep. Sci., 37, p. 558-565 (2014). https://doi.org/10.1002/jssc.201301265
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Agilent
Instruments UHPLC, GC, MS, colonnes https://www.agilent.com
Interchim
Colonnes UHPLC, GC, produits https://www.interchim.com/
Knauer
Instruments UHPLC, GPC https://www.knauer.net
Merck – Millipore – Sigma
Instruments, colonnes, produits https://www.sigmaaldrich.com
Perkin Elmer
Instruments UHPLC, GC, MS https://www.perkinelmer.com
Phenomenex
Colonnes UHPLC, GC, produits https://www.phenomenex.com/
Restek
Colonnes UHPLC, GC, produits https://www.restek.com/
Shimadzu
Instruments UHPLC, SFC, GC, MS https://www.shimadzu.com
Thermo Scientific
Instruments UHPLC, GC, chromatographie ionique avec Dionex https://www.thermofisher.com
Waters Corporation
Instruments UHPLC, MS, colonnes https://www.waters.com
HAUT DE PAGECet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive