Présentation
En anglaisAuteur(s)
-
Gilles AMENDOLA : Enseignant chercheur à ESIEE Engineering
-
Patrick POULICHET : Enseignant chercheur à ESIEE Engineering
-
Laure SEVELY : Enseignant chercheur à ESIEE Engineering
-
Laurie VALBIN : Enseignant chercheur à ESIEE Engineering
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Cet article est le premier d’une suite de deux articles, [R 430] et [R 431], traitant du vaste sujet des capteurs MEMS. Dans cette première partie, nous exposerons les technologies de fabrication, les principaux effets physiques rencontrés, et les traitements électroniques associés. Les traitements électroniques couvrent en partie le sujet de la transformation des variations de valeurs d’un paramètre électrique (tel que résistance, capacité...) en un signal électrique facilement utilisable (ce signal pouvant être analogique ou numérique).
Dans la seconde partie (article [R 431]), nous traiterons des techniques utilisées et de leur réalisation industrielle (ou expérimentale) dans les principaux types de mesures. Ainsi, les méthodes utilisées pour les mesures de pression, accélération, vitesse angulaire, courant, détection d’agents chimiques... seront développées dans cette seconde partie.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Génie industriel > Métier : responsable qualité > Capteurs > Les capteurs MEMS - Principes de fonctionnement > Transductions utilisées dans les MEMS
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Transductions utilisées dans les MEMS
Nous classons, ici, les capteurs MEMS par le type de principe physique mis en œuvre pour effectuer la conversion du type de grandeur à mesurer vers la grandeur électrique qui permettra son exploitation (exemple : principe capacitif, piézoélectrique, piézorésistif, etc). Avant cela, il convient de rappeler que ces mécanismes reposent sur la déformation des structures en silicium ou autre matériau. Le paragraphe suivant traite des relations entre forces et déformations dans un matériau.
2.1 Rappel d'élasticité
Lorsqu'un corps est soumis à des contraintes mécaniques, les atomes qui le constituent se déplacent les uns par rapport aux autres. Si ui(xj) représente le déplacement du point matériel suivant l'axe xi par rapport à sa position initiale xj, alors la relation entre le déplacement ui et la déformée Sij est donnée par (équation (1)) :
Sij représente une composante du tenseur des déformations [Sij] qui est sans unité. Dans ce cas i et j prennent la valeur 1, 2 ou 3.
Lorsqu'un solide est déformé, des contraintes internes Tij apparaissent (figure 12) pour s'opposer à cette déformation.
Si i = j, alors les coefficients Tij représentent les contraintes axiales relatives à un allongement ou à un rétrécissement, sinon ils représentent les contraintes de cisaillement.
La loi fondamentale de la dynamique s'écrit (équation (2)) :
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Transductions utilisées dans les MEMS
BIBLIOGRAPHIE
-
(1) - WOLF (S.) - Microchip manufacturing - Lattice Press (2004).
-
(2) - MARESCHAL (O.), LOISEAU (S.), VERJUS (F.), VALBIN (L.), LISSORGUES (G.), BOUREGBA (R.), POULLAIN (G.), SAEZ (S.), DOLABDJIAN (C.) - Modeling and fabrication of piezoelectric aluminum nitride resonator and its application in oscillators - Transducers 2009, Denver, CO, USA (June 21-25, 2009).
-
(3) - HARRISON (C.), RYU (S.), GOODWIN (A.), HSU (K.), DONZIER (E.), MARTY (F.), MERCIER (B.) - A Density-Viscosity MEMS Sensor for Oilfield Applications - SPIE_Sensors-3 (2007).
-
(4) - RASKIN (J.-P.), IKER (F.), ANDRE (N.), OLBRECHTS (B.), PARDOEN (T.), FLANDRE (D.) - Bulk and surface micromachined MEMS in thin film SOI technology - Electrochimica Acta, volume 52, Issue 8, Pages 2850-2861 (10 February 2007).
-
(5) - ROYER (D.), DIEULESAINT (E.) - Ondes élastiques dans les solides, tome 1 : Propagation libre et guidée - Paris : Masson (1996).
-
...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive